
 

 

 

 

 

 

 

SEVENTH FRAMEWORK PROGRAMME 

Networked Media 
 

 

Specific Targeted Research Project 

 

SMART 
(FP7-287583) 

 

Search engine for MultimediA  
environment 

generated contenT 
 

 

 

D3.1 Sensors and multimedia data knowledge represen tation 
 

 

 

 

Due date of deliverable: 01-10-2012 

Actual submission date: 15-10-2012 

 

 

 

 

Start date of project: 01-11-2011       Duration: 36 months 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 2 / 35  

 

Summary of the document 
 

Code: D3.1: Sensors and multimedia data knowledge 
representation  

Last modification: 11-10-2012 

State: Final 

Participant Partner(s): AIT, TELESTO, ATOS, IBM 

Author(s): Aristodemos Pnevmatikakis (AIT), Christos Smailis (TELESTO), 
Nikolaos Katsarakis (AIT),  John Soldatos (AIT), Josemi Garrido 
(ATOS), Zvi Kons (IBM); Elena Garrido Ostermann (ATOS) 

Fragment: No 

Audience:  public 

 restricted 

 internal 

Abstract: A report on the representation of sensors and multimedia data 
based on the outcomes of task 3.1. The report documents the 
mechanisms selected in order to deal with multimedia data and 
metadata in SMART. 
 

Keywords:  Sensor Streams, Data Feeds Modelling, XML Schema, JSON 
 

References:  WP2 Deliverables D2.2 and D2.3 are background documents for 
the present one. D2.2 and D2.3 facilitate the (better) 
understanding of several of the technical choices that are 
illustrated in this document. DoW 
 

 

 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 3 / 35  

 

 

Table of Contents 

 
1 Executive Summary ................................. .................................................................................................4 

1.1 Scope ...................................................................................................................................................4 

1.2 Audience ..............................................................................................................................................4 

1.3 Summary ..............................................................................................................................................4 

1.4 Structure ...............................................................................................................................................5 

2 Introduction ...................................... .........................................................................................................6 

2.1 Different Types and Role of Data Feeds in SMART ............................................................................6 

2.2 Evaluation criteria for Feed and Feed Output Data Modelling Technologies ......................................6 

3 Sensor and multimedia modelling technologies ...... .............................................................................8 

3.1 Modelling Feeds and Feed Output Data ..............................................................................................8 

3.2 State of the art in data description .......................................................................................................8 

3.3 The SMART approach ...................................................................................................................... 15 

4 Modelling Feeds in SMART Edge Node ................ ............................................................................... 16 

4.1 Feed Specification in SMART Edge Node ........................................................................................ 16 

4.2 Comparative synopsis of sensor and multimedia modelling technologies ....................................... 19 

4.3 Example of a Physical Feed Definition ............................................................................................. 20 

4.4 Example of a Mixed Feed Definition ................................................................................................. 21 

4.5 Example of a Virtual Feed Definition ................................................................................................. 24 

5 Feed Output Models used in SMART Edge Node ........ ....................................................................... 25 

5.1 Encoding data extracted from Feeds ................................................................................................ 25 

5.2 Physical Measurement Data modelling example .............................................................................. 25 

5.3 Audio/Video data modelling example modelling ............................................................................... 26 

5.4 Social Feed data modelling ............................................................................................................... 26 

5.5 Modelling other types of data ............................................................................................................ 27 

6 Conclusions ....................................... ..................................................................................................... 28 

7 BIBLIOGRAPHY AND REFERENCES ....................... ............................................................................ 29 

8 ANNEXES ................................................................................................................................................ 30 

8.1 A: Feed Description XSD file ............................................................................................................ 30 

8.2 MPEG-7 compliant description of output metadata .......................................................................... 33 

8.3 SMART metadata in RDF triples ....................................................................................................... 35 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 4 / 35  

 

1 Executive Summary 

1.1 Scope  

The SMART search engine is designed to search information and identify patterns over arbitrary large 
numbers of sensor repositories, which are populated by data stemming from physical and virtual 
sensors. Within the SMART architecture, physical sensors, perceptual components (i.e. A/V signal 
processing algorithms) and social networks processing algorithms (i.e. the so-called social sensors) act 
as data and are referred to as Data Feeds. These sensor / algorithm pairs produce data and metadata, 
which will be accordingly become searchable by SMART multimedia search engine. The purpose of the 
present deliverable is to illustrate the modelling of Data Feeds within the SMART system and more 
specifically within the edge nodes of the SMART system. The modelling of these feeds emphasizes the 
simplicity of their management, while also boosting the openness of the SMART system. The latter 
openness is boosted on the basis of the ability to easily define and add new feeds. As part of the 
deliverable, we also illustrate different data modelling options that were explored prior to the selection 
and consolidation of the SMART data models for the various sensor feeds. Note that this deliverable is 
the first among a series of project documents that will define data modelling and representation in the 
scope of SMART system. This is due to the fact, that data related to sensor measurements are not only 
managed and stored in the edge server. Those data actually flow to the upper layers of the SMART 
system and are persisted at other points as well. 

1.2 Audience  

The modelling and representation of sensor data within SMART is of great interest to a number of 
stakeholders including: 

• Developers of the SMART open source project : SMART open source developers will use the 
models and schemas presented in this document as part of their effort to provide the open 
source implementation of the SMART system. Data models described within this deliverable will 
be used in order to define and manage the sensor inputs to the edge server. 

• The Open Source Community : The models and representation of this deliverable will serve as 
a basis for the definition of new sensor streams as inputs to the SMART system. Hence, open 
source community developers will benefit from the present document in their effort to define 
and attach new data feeds to the SMART system. 

• SMART project members (notably members working in W P4 and WP5 of the project) : The 
present deliverable will provide valuable insights to all SMART project members in terms of how 
feeds and their outputs are modelled through the system. Such insights will be extremely useful 
for project members in charge of data access/representations in WP4/WP5. 

1.3 Summary  

The objective of this document is to describe the sensors and multimedia data knowledge 
representation within the SMART project. This document describes both the technical details of the 
data representation and the process which has led us to this choice. 

Description of sensors and multimedia data is a growing topic which has advanced considerably in 
recent years. Our work here was influenced considerably by those advancements and tries to match 
state-of-art in respect to current standards and trends. On the same time we had to take into account 
other considerations which are specific to the SMART system such as the real-time operation, its open-
source nature and the requirements of the different stack holders which are described in D2.1. 

We start by presenting current state-of-art in sensor and sensors output information models. This 
includes SensorML which is an XML standard used for describing sensors and network of sensors. 
Next we describe the MPEG-7 standard which can describe media and media streams. We follow with 
RDF which is more general format for describing various resources and can also be applied for sensors 
and media, Mpeg-7 which is a standard for modelling audio-visual resources as well as three 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 5 / 35  

 

multimedia ontologies based on MPEG 7. 

The selected SMART approach is somewhat simplified version of SensorML which uses XML for 
describing the feed specifications. This approach was selected because it can reduce the overhead of 
more complex standards while still being able to give full description of the sensors and their data. 

The edge-nodes are described as a system which extracts and stores data from multiple 
heterogeneous physical feeds (E.g. Sensors) or virtual feeds (the latter being the results of various 
processing units or software that processes data from social networks).  

The output of each Data Feed can be sensor measurements, results from sensors processing 
algorithms or text from social components. Feeds have to encode their output data in a JSON Format, 
before it is sent to the Edge Node. However Feed output data that is already stored in the Edge Node is 
encoded in RDF before being sent to different layers of the architecture. 

It is sometime easier to visualise and verify that those concepts can be applied to the real world by 
giving examples. Therefore, we provide several examples illustrating the definition of feeds with 
physical, virtual and mixed components. We also provide examples for the different data output 
encodings. 

As can be seen from those examples, the SMART modelling formats are simple, yet powerful enough 
to give complete description both of the feeds and their data streams. 

1.4 Structure  

The document is structured as follows: 
• Section 2 provides an introduction to the scope of the data models and related representation 

techniques that are described as part of this deliverable. 
• Section 3 illustrates techniques for modelling sensors and data feeds considered by the project, 

along with the rationale of the final selection. 
• Section 4 focuses on the presentation of the techniques for feeds modelling and definition, 

which include the metadata, that describe the characteristics of a Feed. These metadata refer 
to the way a Feed is described/represented in the SMART system. 

• Section 5 focuses on the presentation of the models and techniques for sensor data modelling, 
which include the output data that are emitted by a sensor (physical or virtual) to the SMART 
edge node. The section concludes with some illustrative examples of modelling specific sensor 
data and metadata. 

• Section 6 concludes the deliverable. 

Note that the deliverable includes also an Appendix where several modelling examples based on 
different data modelling technologies are presented. 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 6 / 35  

 

2 Introduction 

Within SMART, every component that contributes data to the platform is considered a Data Feed . 
Therefore the Data Feed concept represents two main categories of data sources that can contribute 
data to the SMART Platform: Physical Feeds  as well as Virtual (software) Feeds . Therefore in order 
to support data extraction from the aforementioned multiple heterogeneous Data Feeds, the SMART 
Platform needs methods that enable the formal description of their specifications as well as the data 
they produce.  

2.1 Different Types and Role of Data Feeds in SMART  

• Physical Feeds 
Hardware sensor components responsible for providing measurement data or detecting events 
in the physical world. 

• Virtual Feeds (defined on the basis of the above) 
Virtual feeds are software components that use algorithms in order to produce output data that is 
emitted to a Smart Edge Node.  
E.g. Social Feed: 

Software components responsible for detecting events using data from Social Networks. 

• Mixed  Feeds 
Mixed Feeds contain both hardware sensors as well as software processing components 
E.g. Perceptual Components (A/V Processing): 

Components related to the classification of events that stem from audio or video data. Such 
data are processed by algorithms and together with the sensor / algorithm pair forms a 
mixed feed. 

Methods that allow the formal description of data feed specifications and outputs are needed. 
Specifically we need a Feed Model  that will allow the description of the specifications of each 
attached feed as well as a Feed Output Model  that will allow the formal encoding of the 
measurements or events that were observed by each feed. The requirements for these models 
should satisfy are listed in sections 2.2 and 2.3. 

2.2 Evaluation criteria for Feed and Feed Output Da ta Modelling Technologies 

The following requirements are used as criteria for evaluating the reviewed modelling technologies in 
the next section. The following criteria were formed by keeping in mind the needs of developers, users 
and the design requirements of the SMART Platform. 

• Simplicity (easy to define, parse, integrate) 
The simplicity of the Model is expected to increase its usability in terms of parsing and 
integration. 

• Generality 
A Feed model should be able to handle the description of Feeds with very different 
specifications, since some of them  will be hardware components, others will be software 
components, while some will include both hardware or software parts. On the other hand, a Feed 
Output Data model should be able to handle the description of measurements as well as events 
with very different specifications, since some of them will stem from a variety of highly 
heterogeneous data sources. 

• Openness 
Is the Model freely available or is it propriety? 

• Extensibility 
The Feed Model is expected to be easily extensible, if needed, in order to handle needs that 
arise, as the project evolves. The Feed Output Data model should be able to handle the 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 7 / 35  

 

description of numerous types of measurements and events due to the high heterogeneity of 
feeds. 

• Multimedia Orientation 
A Feed Model should be able to describe the specifications of Audio-Visual Sensors. Feed 
Output Data models should be able to handle the description of numerous types of 
measurements and events due to the high heterogeneity of feeds. 

• Standard Compliance 
The selected Model should contain structures that provide compatibility with relevant market 
standards. 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 8 / 35  

 

3 Sensor and multimedia modelling technologies 

3.1 Modelling Feeds and Feed Output Data 

In the scope of this section we present different technologies, which were considered for the modelling 
of Feeds and their output data within the SMART system. Note that the main objective of this 
deliverable is to provide open and extensible data models for both sensors and their data. Feed 
modelling is performed on the basis of metadata that describe the purpose and the structure of each 
data source. Feed models should be able to support physical, virtual and social sensors. At the same 
time, sensor data modelling refers to the modelling of data that are fed (from the sensors) to the edge 
nodes. 

In following paragraphs we review alternative technologies considered for the implementation of Feed 
and Feed output modelling in SMART. The scoring formula we use, is based upon the criteria 
mentioned in section 2.2. 

3.2 State of the art in data description 

General Data Standards 

XML 

The XML (Extensible Mark-up Language) is mainly considered for modelling of output data produced by 
SMART Feeds. XML is a widespread data-interchange format, designed with human readability in 
mind. 

Score 

• Simplicity : 10 
XML is a widespread tool for modelling metadata as key value pairs in a formal manner.  

• Generality:10  
It can be used to model any type of information 

• Openness:10 
XML is free to use 

• Extensibility:10 
XML can be accompanied by the use of XML Schema, a dialect used for creating schemas for 
validating XML Documents  

• Standard Compliance:10 
XML is a standard. 

• Multimedia Orientation: 7 
XML is a generic tool for data modelling and thus can be used for describing audio-visual 
content. However it does not provide any specialized structures for this task. 

• Final Score: 9.5 
XML perfectly suits the requirements of feeds that need a simple and lightweight tool for 
encoding their output data  



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 9 / 35  

 

 

JavaScript Object Notation 

The JSON (JavaScript Object Notation) is another option mainly considered for modelling of output data 
produced by SMART Feeds. JSON1 is a lightweight data-interchange format, designed with human 
readability in mind. JSON is built on two structures: 

• A collection of name/value pairs. In various languages, this is realized as an object, record, 
structure, dictionary, hash table, keyed list, or associative array. 

• An ordered list of values. In most languages, this is realized as an array, vector, list, or 
sequence. 

As mentioned in D2.3, “Multimedia Search Framework Open Architecture and Technical 
Specifications.” due to providing a lightweight and formal way for describing metadata, JSON has been 
adopted by the SMART Architecture for encoding the output data of feeds that are attached to an Edge 
Node. 

Score 

• Simplicity : 10 
JSON is a minimal tool for modelling metadata as key value pairs in a formal manner.  

• Generality:10  
It can be used to model any type of information 

• Openness:10 
JSON is free to use 

• Extensibility:10 
JSON can be accompanied by the use of JSON Schema, a dialect used for creating schemas for 
validating JSON Documents  

• Standard Compliance:10 
JSON is a standard. 

• Multimedia Orientation: 7 
JSON is a generic tool for data modelling and thus can be used for describing audio-visual 
content. However it does not provide any specialized structures for this task. 

• Final Score: 9.5 
JSON perfectly suits the requirements of feeds that need a simple and lightweight tool for 
encoding their output data  

 

Specific Data Standards 

SensorML 

Formal descriptions of the capabilities of sensor based systems, is a necessary prerequisite in order to 
make hardware detectable, accessible as well as reusable within multiple heterogeneous systems or 
networks. The aforementioned goal can be accomplished using SensorML. SensorML is an XML 
Schema based standard, for modelling sensor systems as well as the processing procedures that are 
associated with them. More specifically SensorML can make feasible, the modelling of sensor systems 
as well as non-physical processes by providing the means necessary for creating metadata, able to 
describe both (physical or non-physical) processes, as well as the order of their execution. Using this 
approach SensorML enables the creation of measurement genealogies while simplifying their on 
demand processing. Advantages acquired by the adoption of SensorML standard in a system include, 
the support it offers for tasking, observation and alert web services, simplifying the inclusion of self-
organization related capabilities to the system and finally archiving sensor parameters. 

                                                      
1 Description of the JSON format can be found at:  http://www.json.org/ 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 10 / 35  

 

Basic structural elements of SensorML 

• Abstract Processes 
The most important structural element of SensorML for describing processes is the class 
AbstractProcess. This class offers a general framework for modelling processes of any type. It 
includes the following processes that may be inherited from processes belonging to specialized 
categories: 

- Process Name 
- Description of the performed functionality  
- Inputs categorized either as observed events or incoming raw data depending on the 

nature of the process 
- Outputs, the nature of whom also depends on the type of the process 
- Process Parameters.  

• Non-Physical Processes 
Mathematical procedures that are applied to data can be considered as non-physical 
processes. In SensorML individual non-physical processes may be modelled through the class 
Process Model which inherits and extends the AbstractProcess class by incorporating a 
property for explicitly describing each mathematical procedure. Complex non-physical 
processes can be represented through the class ProcessChain. Each chain processes, is in 
fact a collection of ProcessModels or other ProcessChains which are executed in a serial 
manner in order to produce an arithmetic result. 

• Physical processes 
Physical Processes represent devices or complex sensor systems. The most basic class for 
describing physical processes within SensorML is Component. It is used for representing 
sensor devices (or physical components that cannot be divided to simpler concepts further). 
Complex sensor systems that may also include a variety of physical and non-physical 
processes are represented by the class System. 

Score 

• Simplicity : 5 
Although the general mechanics may seem simple SensorML contains a huge amount of extra 
elements that tend to complicate feed modelling 

• Generality:9 
Although SensorML is a very general tool for encoding hardware as well as sensor systems in 
any level of detail, its verbose schema may complicate the low level description of some systems 
related to sensing such as cameras. However it can model both Physical, Virtual as well as 
Mixed feeds since these concepts are equivalent to the ProcessModel, Component and System 
classes of SensorML respectively. 

• Openness:10 
SensorML is free to use  

• Extensibility:6 
Although it is feasible, extending the original SensorML schemas requires an expert.  

• Standard Compliance:10 
SensorML is an Open Geospatial Consortium standard. 

• Multimedia Orientation: 8 
SensorML is a standard that mainly focuses on modelling non AV sensors, but can also model 
the specifications of AV sensors.  

• Final Score: 8 
 All in all SensorML is a good candidate for modelling the specifications of a feed in a formal 
manner. However it is quite verbose and difficult to extend. 
 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 11 / 35  

 

MPEG-7 

One of the options for modelling SMART Feeds and their output data is the MPEG-7 standard. This 
option was considered mainly due to the fact that SMART emphasizes on the inclusion of several audio 
and video signal processing algorithms as virtual sensors. The outputs of these algorithms and their 
interrelationships can be modelled using MPEG-7 [Puri11]. The latter standard incorporates 
standardized description schemes that are mainly targeting efficient retrieval of information on 
multimedia streams. Hence, MPEG-7 can be used to represent audio-visual information in various 
forms of media, such as pictures, 2D/3D models, audio, speech, and video [Martınez02]. It can also be 
used to capture both simple and more sophisticated representations of audio-visual metadata. In the 
Appendix of this document we provide a couple of MPEG-7 compliant descriptions of metadata 
stemming from visual processing algorithms developed by SMART partner AIT. 

Despite its appropriateness for modelling multimedia data/metadata, MPEG-7 is not very appropriate 
for modelling non A/V sensors and social sensors, given that these sensors could not directly benefit 
from the media-related metadata structures of MPEG-7.  MPEG-7 would be ideal for modelling a 
system that exploits solely audio-visual sensors and related signal processing algorithms. This is not 
the case however for SMART and its applications, which are expected to make heavy use of non-
audio/visual sensors, various virtual sensors, as well as social networks information processing 
algorithms.  

Note that as part of the evaluation of MPEG-7 as a potential solution to data streams representation, 
the consortium has created sample MPEG-7 documents on the basis of the outputs of the visual 
processing components of the partners. Specifically, the MPEG-7 compliant modeling of AIT’s person 
tracker output is listed in the second annex of this document. Despite the appropriateness of MPEG-7 
for modelling data and metadata of the visual processing components of the project, one has to note 
that the capabilities of the standard are only poorly explored in those cases. This is because the 
metadata of the visual processing components of the project does not capture/include the relationships 
between MPEG-7 multimedia objects. As already outlined, MPEG-7 was not finally selected mainly due 
to its inappropriateness for capturing the data of the non-audio/visual sensors of the project in an open 
and extensible way. Following paragraphs score the MPEG-7 modelling solution against the various 
criteria set as part of the format selection process. 

Score 

• Simplicity : 7 
Mpeg7 is a very complex tool for modelling multimedia related data 

• Generality:2 
Mpeg7 can only be used for modelling audio-visual content 

• Openness:10 
Mpeg7 is free to use 

• Extensibility:5 
Extensive knowledge of XML Schema and multimedia modelling is required 

• Standard Compliance:10 
Mpeg7 is a standardized. 

• Multimedia Orientation: 10 
Mpeg7 is limited on modelling audio-visual related content. 

• Final Score: 7.3 
MPEG 7 is restricted in modelling only audio-visual content, which it is unable to handle the 
issues caused by the highly heterogeneous output data produced by SMART Feeds. 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 12 / 35  

 

 

Resource Description Format 

The RDF (Resource Description Framework) is another option considered for data modelling of SMART 
Feeds and their output data. RDF is a legacy semantic web technology that is nowadays considered 
the primary option for the representation of LinkedData, which provide a set of best practices for 
publishing and interlinking structured data on the Web [Heath11]. RDF provides a single unifying data 
model for LinkedData, which provides globally unique identification of entities and enables different 
schemata to be used in parallel to represent data («Web-of-Data» concept). SMART could exploit 
information from the Web-of-Data cloud, such as Geonames (www.geonames.org), which is an open-
license geographical database that publishes Linked Data about 8 million locations. Also, 
LinkedGeoData [Stadler12], provides a Linked Data conversion of data from the OpenStreetMap 
project, which includes information about more than 350 million spatial features. Locations in 
Geonames and LinkedGeoData are interlinked with corresponding locations in DBpedia, ensuring there 
is a core of interlinked data about geographical locations. 

As illustrated in deliverables D2.3 and D4.1 of the project, SMART has ultimately adopted RDF for 
describing/modelling the (usually high-level) outputs of edge nodes of the system. Nevertheless, RDF 
has not been selected and used for modelling lower level sensor and sensor data that are attached/fed 
to the SMART edge nodes. The reason for this has mainly been the needs for simplicity and openness, 
which are boosted by the selection of simpler data structures, which however feature weaker 
semantics. 

Score 

• Simplicity : 10 
RDF is a minimal tool for modelling semantic metadata 

• Generality:10  
RDF can be used to model any type of information 

• Openness:10 
RDF is free to use 

• Extensibility:10 
Is already extended by RDF Schema as well as OWL Full (which was designed to preserve 
some compatibility with RDF Schema)  

• Standard Compliance:10 
RDF is a standard. 

• Multimedia Orientation: 7 
RDF is a generic tool for data modelling and thus can be used for describing audiovisual content. 
However it does not provide any specialized structures for this task. 

• Final Score: 9.5 
RDF is a very general tool for modelling triples of semantic metadata. It is useful for encoding 
feed output data when transferred between the higher levels of the SMART platform 
architecture, where structures that provide basic semantic interoperability are required. 
 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 13 / 35  

 

 

Multimedia ontologies 

Multimedia ontologies are useful mainly for construction semantic search engines. In the case of 
SMART, it is not an objective creating a complete semantic search engine. A description of some 
multimedia search engine and related technologies can be found in [Troncy11]. 

An example of multimedia search engine including a multimedia ontology can be Buscamedia 
[Busca12]. As part of the development efforts, Buscamedia developed a new multimedia ontology 
called the M3 (Multimedia, Multilingual, Multidomain).  A common problem with ontologies is that are 
only valid for some specific domains. In the case of Buscamedia, the scope of the project was reduced 
to a subset of multimedia contents about live news, education and sports. Even for these reduced 
domains, the effort to create and populate the ontologies is not trivial. 

A common problem with semantics search engines that hinder its adoption in practice is that the speed 
of semantics repositories is sometimes too slow for real time search or real time annotation. A common 
approach is to design the system using semantics, but using traditional applications for indexing and 
searching (as Lucene in Buscamedia). In practice, SMART is adopting a quite similar approach but 
using Terrier for indexing.  

Some other popular multimedia ontologies, include among others the Visual Descriptor Ontology (VDO) 
[Simou05]and Multimedia Structure Ontology (MSO) which were developed in the scope of the Ace 
Media project using the Resource Description Framework Schema (RDFS) as well as the Core 
Ontology for MultiMedia (COMM) [Arndt07], which was developed using OWL DL. All the 
aforementioned ontologies focus on providing semantic formalizations of specific parts of the MPEG-7 
which used xml to describe multimedia metadata and thus did not provided semantic interoperability. 
For the aforementioned reason these ontologies inherit the drawbacks of MPEG-7 (E.g. they are not 
appropriate for modelling non A/V sensors and social sensors as well as their output data). The main 
utility of these MPEG-7-related ontologies is the annotation of events in a semantic search engine, so 
they do not apply to SMART. 

Additionally none of the aforementioned ontologies has been standardized. 

Score 

• Simplicity: 3 
They tend to be more complex than MPEG 7, since they include complex semantic capabilities. 
Understanding any ontology requires previous knowledge about semantics. This requirement 
can prevent the adoption by open source developers. 

• Generality: 4  
Similar to MPEG 7 they can only be used to model audio-visual content. An ontology is valid only 
in its scope or domain. 

• Openness: 9 
Most ontologies are free to use, but they can be subject to copyright laws, the same as source 
code.2 

• Extensibility: 8 
Usually ontologies are generalized by extension. It is quite common for an ontology being an 
extension of another. On the other hand extension would require an ontology expert with very 
good MPEG-7 knowledge. 

• Standard Compliance: 6 
None of the aforementioned ontologies is a standard; however the concepts they include can be 
mapped to MPEG 7 (but not SensorML or any equivalent modelling tool). Generally, ontologies 
are published but usually not standardized. Some well-known ontologies are standards by fact, 

                                                      
2 http://www.benedict.com/Digital/Software/Ontology.aspx 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 14 / 35  

 

but not formally. 

• Multimedia Orientation: 10 
These ontologies focus on describing multimedia content. 

• Final Score: 6.7 
The aforementioned multimedia ontologies inherit the disadvantages of MPEG-7(for being 
unable to model other types of data except multimedia content), while introducing complexities 
related to semantics, that are not necessary to the SMART Platform. 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 15 / 35  

 

 

3.3 The SMART approach 

In order to simplify the use of the SMART platform, despite of the multiple possible data sources and 
types, we avoided the verbose approach of SensorML and developed our own XML Schema that 
follows the generic approach of SensorML for describing Data Feeds, but simplifies it as presented in 
the following sections. After defining our model, we evaluate it, using the scoring formula introduced in 
section 2.2. Additionally we created very simple but flexible schemas for encoding both Feed Output 
measurements when emitted to the edge node as well as when transferred from the edge node to other 
important layers of the SMART Architecture. The SMART metadata come in RDF triples, and they are 
formatted either in JSON or in XML. We thus take advantage of the nice features of these data 
description standards. 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 16 / 35  

 

4 Modelling Feeds in SMART Edge Node 

The Smart Edge Node will be able to collect data related to the physical world, through a variety of 
sources. These sources consist of hardware and/or software feeds that will contribute their output data 
to the system. In SMART we model all the attached systems using the notion of a "Data Feed", which 
contains the description of all subsystems that need to interface with the Edge Node. Due to the high 
level of the data source heterogeneity, the SMART platform should benefit from a simple and coherent 
method of describing data feeds. This method should set the foundations for: 

• Modelling structured metadata, describing certain properties of data feeds. 
• Registering new heterogeneous feeds in a uniform manner. 
• Retrieving information for a feed 
• Understanding the semantics of the retrieved data. 

In order to achieve the aforementioned goals we have developed an XML Schema for describing data 
feeds. As mentioned above, the choice for developing a new XML schema for this end was made in 
order to avoid the use of verbose and bloated similar approaches such as SensorML, which would 
complicate the development cycle by introducing extra unneeded features and would require additional 
processing power for real-time indexing. This XML schema defines a general class for describing feeds. 
Each feed is associated with a unique URI which is composed of the ID of the Edge Node as well as 
the ID of the feed (which is provided after registration). Moreover every feed should be accompanied by 
a title and a textual description of the function it performs. Also every feed automatically obtains a feed 
type (Physical / Virtual / Mixed), based on the components that are included in the feed. Obligatory 
properties of a feed also include descriptions of the components attached to the feed, as well as the 
outputs it produces. Each feed has also a small set of optional, but commonly used, properties which 
include: Geolocation, Description Tags and Contact Information. In order to enable modelling of feed 
components, the SMART Edge Node XML Schema incorporates an abstract component type which has 
two specializations: one for representing Physical Components as well as one for Virtual (Software) 
Components. Finally this XML Schema allows the definition of various outputs produced by the 
abovementioned components.. These outputs are characterised by properties such as the Type of the 
retrieved measurement data, the Measurement Unit (Optional), etc. The specification details of the 
SMART Edge Node XML Schema for describing a feed are listed below. 

4.1 Feed Specification in SMART Edge Node 

It should be noted that the specification below is slightly complex, in order to cover the broadest 
possible scenarios, and the creation of the described XML for feed registration can be tiresome and 
prone to errors. Therefore, a tool will be developed, providing help for the novice user and allowing him 
to easily generate valid feed descriptions. 

Feed 
Property  Data Type  
Id URI (e.g. EdgenodeId:unique# per EdgeNode), will be provided upon 

successful execution of the command to register a new feed. 
Type Will be inferred by the types of Components included in the feed. Type is 

restricted to the following values: 
Physical (for feeds containing Temperature/humidity sensors)  
Virtual (for feeds related to twitter, other social media, multimedia 
processing algorithms) 
Mixed (for feeds that include both software and hardware parts e.g. 
video analysis feeds)  

Title Text (Feed Name) 
Description Text (Feed Description) 
Description Tags (Optional) URITags: Space-separated URIs 

TextTags: Space-separated Keywords (the special sequence %20 can 
be used to represent a keyword containing spaces) 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 17 / 35  

 

Geolocation (Optional) Longitude: double [-180,180) 
Latitude: double (-90,90) 
Elevation (optional): double 

Contact Info (Optional) WebSiteURL: URI 
ContactEmail: text, must have email address form, a@b.c 

Components List of <Component>  
Outputs List of <Output>  

 

Component 

The components have an abstract type, Physical or Virtual, described below. 

Physical Component 
Property Data Type 
Name Text (Component Name, unique per feed, containing lowercase 

Latin characters (a-z), digits (0-9), or the underscore character _ ) 

Description Text (Component Description) 
Description Tags (Optional) URITags: Space-separated URIs 

TextTags: Space-separated Keywords (use %20 for spaces in 
keywords) 

Geolocation (Optional) Longitude: double [-180,180) 
Latitude: double (-90,90) 
Elevation (optional): double 

Type Text (e.g. camera, microphone, temperature/dust/vibration/gas 
sensor) 
It is suggested to restrict the type to a set of pre-defined values that 
will expand as the need arises. 

Exposure One of the following: 
Indoor 
Outdoor 

Disposition One of the following: 
Fixed 
Mobile 

Serial Number (Optional) Text 
Part Number (Optional) Text 
Manufacturer (Optional) Text 
Working Status (Optional) One of the following: 

ON 
OFF 

Efficiency (Optional) Double [0-1] (the accuracy of the component outputs) 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 18 / 35  

 

 

Virtual Component 
Property Data Type 
Name Text (Component Name, unique per feed, containing lowercase 

Latin characters (a-z), digits (0-9), or the underscore character _ ) 

Description Text (Component Description) 
Description Tags (Optional) URITags: Space-separated URIs 

TextTags: Space-separated Keywords (use %20 for spaces in 
keywords) 

Type Text (e.g. Camera processing, mobile, twitter) 
As is the case with the physical components, it is suggested to 
restrict the type to a set of pre-defined values that will expand as 
the need arises. 

Efficiency (Optional) Double [0-1] (the accuracy of the component outputs) 
 
 

 

Output 
Property Data Type 
Name Text (Output name, unique per component producing the output, 

containing lowercase Latin characters (a-z), digits (0-9), or the 
underscore character _ ) 

Produced By Text, corresponding to one of the defined components 
Description Text (Component Description) 
Description Tags (Optional) URITags: Space-separated URIs 

TextTags: Space-separated Keywords (use %20 for spaces in 
keywords) 

Type One of the following: 
boolean 
integer 
double 
string 
 
If a component produces an unknown number of outputs of a 
specific type, it can be represented with the notation "array(type)", 
where type is any of the previously defined. 

Unit (optional) Text (e.g. m/s, kg, Celcius degrees) 
Has Confidence Boolean (Whether the measurement provides confidence at each 

temporal instance) 
 

The complete XSD code of the aforementioned schema is provided in Annex 8.1. 

Score 

• Simplicity : 10 
The SMART Feed Model only defines concepts useful within the scope of the project 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 19 / 35  

 

• Generality:10 
This model was designed in order to provide an abstraction level that would eliminate the 
heterogeneity of the Data Feeds used within the SMART Project. 

• Openness:10 
Similar to the rest of the SMART software components, the aforementioned model will also be 
free as open source software. 

• Extensibility:10 
Extension would require basic knowledge of XML Schema. 

• Standard Compliance:7 
The aforementioned model is not a standard; however the concepts it defines can be converted 
to equivalent concepts of SensorML (which is also a good but rather verbose tool for modelling 
data feeds) 

• Multimedia Orientation: 7 
The SMART Feed Model is quite generic and can thus support the description of multimedia 
sensors 

• Final Score: 9 
The SMART Feed Model was designed by keeping in mind the needs of both developers and 
users of the SMART Platform. Thus it is able to model any type of Data Feed using minimal 
concepts that mainly focus on associating feed components with the types of output data that 
they produce.   

4.2 Comparative synopsis of sensor and multimedia m odelling technologies 

The following table presents a synopsis of the evaluation of the reviewed sensor and multimedia 
modelling technologies 

  

 Simplicity  Generality  Openness  Extensibility  Standard 
Compliance  

Multimedia 
Orientation  

Final  

SensorML 5 9 10 6 10 8 8 

MPEG 7 7 2 10 5 10 10 7 

Multimedia 
Ontologies  

3 4 9 8 6 10 6.7 

SMART 
Feed 
Model 

10 10 10 10 7 7 9 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 20 / 35  

 

 

4.3 Example of a Physical Feed Definition 

An example for the definition of a physical feed comprised of a temperature and humidity sensor. Each 
sensor component produces a specific output as shown below. It should be noted that the URI 
description tags would be preferably limited within a pre-defined set, detailed in Deliverable 4.1, “SMART 
Distributed Knowledge Base and Open Linked Data” and shown for completeness of this document in 
Annex 8.3. 

 
<?xml version="1.0"  encoding="UTF-8"?>  
<Feed xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation="SMART_Datafeed_Schema_v0.3.xsd" > 
 <Id>edgenodeName:temphumfeed </Id> 
 <Type>Physical </Type> 
 <Title>Temperature and Humidity Sensor Feed </Title> 
 <Description>The feed contains an ARDUINO DUEMILANOVE, an LM335A  Temperature 
Sensor and a Relative Humidity Sensor </Description> 
 <DescriptionTags> 
  <TextTags>Temperature Humidity Arduino </TextTags> 
  <URITags>smartfp7:temperature smartfp7:humidity </URITags> 
 </DescriptionTags> 
 <ContactInfo> 
  <ContactEmail>a@b.c</ContactEmail> 
 </ContactInfo> 
 <Components> 
  <Physical> 
   <Name>temperature_sensor </Name> 
   <Description>LM335A Temperature Sensor </Description> 
   <DescriptionTags> 
    <TextTags>Temperature Sensor Arduino </TextTags> 
    <URITags>smartfp7:temperature </URITags> 
   </DescriptionTags> 
   <Geolocation> 
    <Longitude>-139.8 </Longitude> 
    <Latitude>41.8 </Latitude> 
   </Geolocation> 
   <Type>Thermometer </Type> 
   <Exposure>Indoor </Exposure> 
   <Disposition>Fixed </Disposition> 
   <Efficiency>0.80 </Efficiency> 
  </Physical> 
  <Physical> 
   <Name>humidity_sensor </Name> 
   <Description>Relative Humidity Sensor </Description> 
   <DescriptionTags> 
    <TextTags>Humidity Sensor Arduino </TextTags> 
    <URITags>smartfp7:humidity </URITags> 
   </DescriptionTags> 
   <Geolocation> 
    <Longitude>-139.8 </Longitude> 
    <Latitude>41.8 </Latitude> 
   </Geolocation> 
   <Type>Humidity </Type> 
   <Exposure>Indoor </Exposure> 
   <Disposition>Fixed </Disposition> 
   <Efficiency>0.90 </Efficiency> 
  </Physical> 
 </Components> 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 21 / 35  

 

 <Outputs> 
  <Output> 
   <Name>temperature </Name> 
   <ProducedBy>temperature_sensor </ProducedBy> 
   <Description>Temperature Reading </Description> 
   <DescriptionTags> 
    <TextTags>Temperature Output Arduino </TextTags> 
    <URITags>smartfp7:temperature </URITags> 
   </DescriptionTags> 
   <Type>double </Type> 
   <Unit>Celcius degrees </unit> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
  <Output> 
   <Name>humidity </Name> 
   <ProducedBy>humidity_sensor </ProducedBy> 
   <Description>Relative Humidity Reading </Description> 
   <DescriptionTags> 
    <TextTags>Humidity Output Arduino </TextTags> 
    <URITags>smartfp7:humidity </URITags> 
   </DescriptionTags> 
   <Type>double </Type> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
 </Outputs> 
</Feed>  
 
 

4.4 Example of a Mixed Feed Definition 

In this section a significantly more complex feed is described, containing both physical components 
such as a microphone and a camera, along with two virtual components, implementing crowd analysis 
in 2 different regions of the camera view. 

It should be noted that in this example the crowd analysis component can provide the timestamp of the 
measurement, indicated as "time ". The type of the timestamp is "string ", therefore it should be 
human-readable, conforming to "xsd:dateTime" specification. Alternatively, a more compact and 
computer-friendly representation would be to have a type of "integer ", indicating the number of 
milliseconds  since 1 January 1970 (Unix epoch). The required millisecond precision is very important, 
as many components can provide metadata multiple times per second; typically a vision-based 
component processes 10-60 frames/sec. Furthermore, if needed it would be easy to include a different 
time for any of the other components, by just including an identically named output for them. However, 
since the two crowd components "calle_monasterio" and "plaza_ayuntamiento" receive data from the 
same camera, there was no need to include the same timestamp a second time. 

Finally, the "colour" output of "calle_monasterio" component shows the use of the array() type. The 
resulting data stream representation in JSON format can be seen in section 5.3, where the 
compactness of this type becomes obvious.  

 
<?xml version="1.0"  encoding="UTF-8"?>  
<Feed xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation="SMART_Datafeed_Schema_v0.3.xsd" > 
 <Id>edgenodeName:audiocrowdfeed </Id> 
 <Type>Mixed </Type> 
 <Title>Audio and Video processing Feed </Title> 
 <Description>The feed represents a simple sound level meter and a more 
elaborate crowd analysis component from camera </Description> 
 <DescriptionTags> 
  <TextTags>sound camera </TextTags> 
  <URITags>smartfp7:audio smartfp7:video smarfp7:crowd </URITags> 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 22 / 35  

 

 </DescriptionTags> 
 <ContactInfo> 
  <ContactEmail>a@b.c</ContactEmail> 
 </ContactInfo> 
 <Components> 
  <Physical> 
   <Name>microphone </Name> 
   <Description>Sound level meter </Description> 
   <DescriptionTags> 
    <TextTags>sound </TextTags> 
    <URITags>smartfp7:audio </URITags> 
   </DescriptionTags> 
   <Geolocation> 
    <Longitude>-139.8 </Longitude> 
    <Latitude>41.8 </Latitude> 
   </Geolocation> 
   <Type>sound </Type> 
   <Exposure>Outdoor </Exposure> 
   <Disposition>Fixed </Disposition> 
   <Efficiency>0.90 </Efficiency> 
  </Physical> 
  <Physical> 
   <Name>camera </Name> 
   <Description>AXIS camera covering 2 areas of interest, a park 
and a public square </Description> 
   <DescriptionTags> 
    <TextTags>camera </TextTags> 
    <URITags>smartfp7:camera </URITags> 
   </DescriptionTags> 
   <Geolocation> 
    <Longitude>-139.823 </Longitude> 
    <Latitude>41.812 </Latitude> 
   </Geolocation> 
   <Type>camera </Type> 
   <Exposure>Outdoor </Exposure> 
   <Disposition>Fixed </Disposition> 
  </Physical> 
  <Virtual> 
   <Name>calle_monasterio </Name> 
   <Description>Crowd analysis for camera region focusing on road 
(Calle de Jesus del Monasterio) </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:crowd smartfp7:road </URITags> 
   </DescriptionTags> 
   <Type>crowd </Type> 
  </Virtual> 
  <Virtual> 
   <Name>plaza_ayuntamiento </Name> 
   <Description>Crowd analysis for camera region focusing on 
public square (Plaza del Ayuntamiento) </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:crowd smartfp7:square </URITags> 
   </DescriptionTags> 
   <Type>crowd </Type> 
  </Virtual> 
 </Components> 
 <Outputs> 
  <Output> 
   <Name>audio_level </Name> 
   <ProducedBy>microphone </ProducedBy> 
   <Description>Ambient Noise level </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:sound </URITags> 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 23 / 35  

 

   </DescriptionTags> 
   <Type>double </Type> 
   <Unit>dB</Unit> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
  <Output> 
   <Name>exposure </Name> 
   <ProducedBy>camera </ProducedBy> 
   <Description>Exposure time </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:exposure </URITags> 
   </DescriptionTags> 
   <Type>double </Type> 
   <Unit>ms</Unit> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
  <Output> 
   <Name>time </Name> 
   <ProducedBy>calle_monasterio </ProducedBy> 
   <Description>Measurement timestamp </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:time </URITags> 
   </DescriptionTags> 
   <Type>string </Type> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
  <Output> 
   <Name>density </Name> 
   <ProducedBy>calle_monasterio </ProducedBy> 
   <Description>crowd density from public square </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:crowd_density </URITags> 
   </DescriptionTags> 
   <Type>double </Type> 
   <HasConfidence>true </HasConfidence> 
  </Output> 
  <Output> 
   <Name>colour </Name> 
   <ProducedBy>calle_monasterio </ProducedBy> 
   <Description>The most prominent colours, listed as XXXX.YYY, 
where XXXX is the colour number encoded as RR*256^2  + GG*256 + BB and YYY is the 
percentage of that colour in the image </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:colour </URITags> 
   </DescriptionTags> 
   <Type>array(double) </Type> 
   <HasConfidence>true </HasConfidence> 
  </Output> 
  <Output> 
   <Name>density </Name> 
   <ProducedBy>plaza_ayuntamiento </ProducedBy> 
   <Description>crowd density from park </Description> 
   <DescriptionTags> 
    <URITags>smartfp7:crowd_density </URITags> 
   </DescriptionTags> 
   <Type>double </Type> 
   <HasConfidence>true </HasConfidence> 
  </Output> 
 </Outputs> 
</Feed>  



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 24 / 35  

 

 

4.5 Example of a Virtual Feed Definition 

This feed is a software component responsible for processing Twitter data stemming from the Social 
Network Manager, in order to extract dates and times related to the specified query term. 

 
<?xml version="1.0"  encoding="UTF-8”?>  
<Feed xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xsi:noNamespaceSchemaLocation="SMART_Datafeed_Schema_v0.3.xsd" > 
 <Id>edgenodeName:socialfeed </Id> 
 <Type>Virtual </Type> 
 <Title>Social Feed </Title> 
<Description> 
This feed processes data from the Social Network Ma nager and emits results to the 
Edge Node. 
</Description> 
 <DescriptionTags> 
  <TextTags>social </TextTags> 
  <URITags>smartfp7:social </URITags> 
 </DescriptionTags> 
 <ContactInfo> 
  <ContactEmail>a@b.c</ContactEmail> 
 </ContactInfo> 
 <Components> 
  <Virtual> 
   <Name>twitter_time_extractor </Name> 
   <Description>Social demo </Description> 
   <Type>social </Type> 
  </Virtual> 
 </Components> 
 <Outputs> 
  <Output> 
   <Name>is_active </Name> 
   <ProducedBy>twitter_time_extractor </ProducedBy> 
   <Description>active or not </Description> 
   <Type>boolean </Type> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
  <Output> 
   <Name>has_date </Name> 
   <ProducedBy>twitter_time_extractor </ProducedBy> 
   <Description>event date </Description> 
   <Type>string </Type> 
   <Unit>ms</Unit> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
  <Output> 
   <Name>has_temporal_hint </Name> 
   <ProducedBy>twitter_time_extractor </ProducedBy> 
   <Description>list of temporal hints </Description> 
   <Type>array(string) </Type> 
   <HasConfidence>false </HasConfidence> 
  </Output> 
 </Outputs> 
</Feed>  



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 25 / 35  

 

 

5 Feed Output Models used in SMART Edge Node 

Unlike the Feed Model which describes the attached Feeds to the SMART Edge Nodes, the Feed 
Output Models are responsible for transferring data between the different components and layers of the 
SMART architecture.  

5.1 Encoding data extracted from Feeds 

In order to make the platform attractive to novice programmers as well as relieving feed developers 
from the burden of encoding data in a heavyweight schema, input from attached feeds should be 
encoded using simple JSON text encoding in key-value pairs, according to the following format: 

 
{ 
 time: "timestamp in xsd:datetime or milliseconds s ince Unix epoch", 
(optional)  
 component_name_1 :  {  
  output_name_1 :  "string value of output 1",  
  output_name_2 :  1234,  
  output_name_3 :  true,  
  output_name_N :  "string value of output N" 
 },  
 component_name_2 :  {  
  output_name_1 :  "string value with spaces",  
  output_name_2 :  456.78,  
  output_name_M :  "string value of output M" 
 }  
}  

Output names are expected to correspond to the output names specified during the feed description 
that was submitted to the system during the feed registration process. The Edge Node can handle the 
parsing of output values using the description of their type that is provided by the Output Class of the 
Feed XML Schema.  

5.2 Physical Measurement Data modelling example 

An example instance of the Feed Output Model that is used for encoding measurements from a simple 
temperature and humidity feed which is described in section 4.2, can be represented as follows: 

 
{  
 "temperature_sensor" :  {  
  "temperature" :  28.1 
 },  
 "humidity_sensor" :  {  
  "humidity" :  64.2 
 }  
}  

The above format is very easy to implement, even for embedded devices with low capabilities 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 26 / 35  

 

 

5.3 Audio/Video data modelling example modelling 

Data produced by the complex feed, described in section 4.4 can be represented  as follows: 

 
{  
 "microphone" :  {  
  "audio_level" :  24,  
 }, 
 "camera" :  {  
  "exposure" :  10,  
 },  
 "calle_monasterio" :  {  
  "density" :  0.170000,  
  "motion_horizontal" :  0,  
  "motion_vertical" :  0,  
  "motion_spread" :  2.200000,  
  "colour" :  [ 32.125100,  2113632.106200,  2113600.092100,  
4218976.066300,  4210752.061800,  2105376.042200,  8256.036100,  2105408.033300,  
8413280.030500,  8224.024800,  0.023300,  10535136.022300,  6316160.021400,  
4210784.017800,  2113664.017800,  12640480.017000]  
 },   
 "plaza_ayuntamiento" :  {  
  "density" :  0.250000 
 },  
 "audio_analysis" : { 
  "crowd_probability" : 0.9, 
  "traffic_probability" : 0.1, 
  "music_probability" : 0.3, 
  "applause_probability" : 0.02 
 } 
}  

It can be seen that, even though the feed was much more complicated, the output data representation 
remains relatively simple. The use of "array" allows for easy submission of an arbitrary number of 
values. Furthermore, it can be seen that the "density " outputs for which the tag "HasConfidence " was 
true are accompanied by the tag "density_confidence ". If the output "colour " had the tag 
"HasConfidence " enabled, we would retrieve a similarly-sized array of "colour_confidence ", 
comprised of numbers in the range [0,1]. 

5.4 Social Feed data modelling 

In order to detect certain types of events the SMART platform will utilize data from Social Networks . 
Social events will be detected by exploiting feeds created specifically for this purpose. To relieve feed 
developers from the burden of accessing multiple Social Networks through heterogeneous APIs, each 
edge node will provide searching functionalities for multiple social netwo rks through  a unified 
interface known as the Social Network Manager. After extracting data from the Social Network 
Manager, each social feed will perform extra processing in order to transform data into valuable output 
information that should be inserted to the edge node. At this point it should be stressed that social feeds 
do not require any different handling than any other conventional feed. Therefore the data they produce 
should also be encoded in the JSON encoding defined in section 5.1. 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 27 / 35  

 

 

An example of the output data produced by a social feed corresponding to the virtual feed definition of 
section 4.5 is given below: 

 
{  
 "twitter_time_extractor" :  {  
  "isActive" :  true,  
  "hasDate" :  "26-07-2012",  
  "hasTemporalHint" :  [ "10:45",  "10:45",  "12:15",  "10:00"]  
 }  
} 
 

5.5 Modelling other types of data 

Transferring data between different layers of Smart  

In order to enable integration of semantic web technologies within the SMART project, data that is 
transferred between different layers Smart Architecture, is encoded in RDF triplets that have the form: 
[subject, predicate, object].   

The RDF can be presented in XML as follows: 

 
<subject> 
 <predicate1>object1 </predicate1> 
 <predicate2>object2 </predicate2> 
 ... 
 <predicateN>objectN </predicateN> 
</subject> 

To facilitate reporting multiple similar measurements, we can indicate that they are produced from 
similar components with different IDs, as defined in the feed description. In RDF representation they 
can be placed in groups with different IDs as tag attributes. For example: 

<measurement> 
 <crowd ID="calle_monasterio" > 
  <density>.03 </density> 
 </crowd> 
 <crowd ID="plaza_ayuntamiento" > 
  <density>.28 </density> 
 </crowd> 
</measurement> 

A detailed description of the various possible tags can be found in annex 8.3. 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 28 / 35  

 

 

6 Conclusions 

The SMART architecture (introduced in deliverable D2.3) specifies the SMART search systems as 
multi-level multi-layer systems, which enable scalable indexing and retrieval over distributed 
repositories of multimedia environment generated content. These multi-layer systems involve several 
points where data and knowledge is modeled and stored. Hence, information delivery in the scope of 
the SMART search engine relies on the modeling of environment generated data and their subsequent 
transformations to the various formats specified in the various layers of the system. In this deliverable 
we have focused on the description of the formats and techniques selected for representing data and 
metadata at the lower-levels of the edge node of the SMART system i.e. at the level where sensors 
feed the SMART system with data. In particular, this deliverable introduces the techniques used in 
SMART for modelling sensor specifications, sensor output as well as multimedia related content, within 
the various layers of the SMART Architecture.  

As part of the sensor data and metadata modeling specification process, we first reviewed several 
methods for encoding and representing sensors/feeds specifications and output data, using a scoring 
formula for evaluation purposes. The scoring formula was used to perform a comparative evaluation of 
various options including standards-based options such as the use of MPEG-7, JSON, SensorML and 
multimedia ontologies. Special emphasis was paid into the requirements for open, modular and 
extensible feeds modeling, which were taken into account during the scoring formula development and 
use processes. Along with the scoring process, we have also identified and elaborated the pros and 
cons of the considered solutions. 

On the basis of the evaluation, we justified the use of a simple custom model for modelling the 
specifications of each Feed. The choice of such a model is not in-line with popular media standards 
(such as MPEG), but it is compliant to the design and implementation of on-line cloud platforms that 
aggregate sensor data and metadata (including user generated data/content).   Moreover we specified 
how output data should be modelled when emitted from a feed to an Edge Node (using JSON) as well 
as when transferred from an Edge Node, to higher layers of the SMART Architecture (using RDF). The 
use of these models was presented using real world examples, including practical examples associated 
with the sensors/feeds that will be used in the scope of the validation and demonstration of the SMART 
search system. In a nutshell emphasis was given on selecting generic tools that would both satisfy the 
requirements of the SMART Platform for syntactic interoperability, generality as well as simplicity, 
without sacrificing semantic interoperability at the layers it is required. 

The present deliverable is the first of series of deliverables that will deal with data modeling and 
knowledge representation at the different layers of the SMART system. Each of these deliverables will 
focus on the data modeling requirements at the specific layer that it deals with. Hence, the present 
deliverable has emphasized simplicity, openness and modularity with a view to facilitating the addition 
of data feeds into the SMART system. Other deliverables will pay more emphasis in semantic power 
and the possibility of reasoning, which are extensively dealt in WP4 of the project. Note that the 
contents of this deliverable will drive the implementation of extensible feeds modelling and 
management mechanisms, as part of the edge node implementation in the scope of the SMART open 
source project (available at: opensoftware.smartfp7.eu). 

 

 

 

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 29 / 35  

 

 

7 BIBLIOGRAPHY AND REFERENCES 

[Arndt07] Arndt R., Troncy R., Staab S., Hardman L.,Miroslav V. COMM: designing a well-founded 
multimedia ontology for the web. 6th International Semantic Web Conference (ISWC'2007) pp. 30-43. 
Busan, 2007 

[Borden11] Pachube Internet of Things "Bill of Rights" Ed Borden, in pachube.com (2011) 

[Busca12] Buscamedia Consortium, D3.3.1 Formalización e implementación de la ontología  (Formalization 
and implementation of the ontology) ,  www.cenitbuscamedia.es/index.php/documentacion.html  

[Heath11] Tom Heath and Christian Bizer (2011) Linked Data: Evolving the Web into a Global Data Space 
(1st edition). Synthesis Lectures on the Semantic Web: Theory and Technology, 1:1, 1-136. Morgan & Clay-
pool. 

[Hellmann09] Sebastian Hellmann et. Al., «Linkedgeodata - adding a spatial dimension to the web of data», 
In Proceedings of the International Semantic Web Conference, 2009. http://dx.doi.org/10.1007/978-3-642-
04930-9_46DOI: 10.1007/978-3-642-04930-9_46 

[Martınez02] Martınez, J.:MPEG-7: Overview of MPEG-7 Description Tools, Part 2. IEEE MultiMedia 9(3), 
83–93 (2002) 

[Mislove10] A. Mislove, “Pulse of the nation: U.S. mood throughout the day inferred from twitter,” 2010. 

[Motoyama10] M. Motoyama, B. Meeder, K. Levchenko, G. M. Voelker, and S. Savage, “Measuring online 
service availability using twitter.” Workshop on online social networks, Boston, Massachusetts, USA, 2010. 

[OGC] Sensor Model Language (SensorML), The Open Geospatial Consortium, http:// 
www.opengeospatial.org/standards/sensorml/. 

[Puri01] Shih-Fu Chang  Puri, A.  Sikora, T.  Hongjiang Zhang, “Introduction to the special issue on MPEG-
7”, IEEE Transactions on Circuits and Systems for Video Technology, Volume: 11 Issue: 6, June 2011, pp. 
685 – 687 

[Sakaki10] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users: real-time event detec-
tion by social sensors,” in 19th international conference on World wide web, Raleigh, North Carolina, USA, 
2010. 

[Stadler12] Claus Stadler, Jens Lehmann, Konrad Höffner, and Sören Auer: LinkedGeoData: A Core for a 
Web of Spatial Open Data, Semantic Web Journal, 2012 

[Simou05] Simou, N., Tzouvaras, V., Avrithis, Y., Stamou, G., Kollias S.. A visual descriptor ontology for 
multimedia reasoning. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), 2005 

[Troncy11] Troncy R,  Huet, B,  Schenk, S (editors) Multimedia semantics : metadata, analysis and 
interaction.  2011 John Wiley & Sons Ltd. Chichester, United Kingdom 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 30 / 35  

 

 

8 ANNEXES 

8.1 A: Feed Description XSD file 

 
<?xml version="1.0""1.0""1.0""1.0" encoding="UTF"UTF"UTF"UTF----8"8"8"8"????>>>>    
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema""http://www.w3.org/2001/XMLSchema""http://www.w3.org/2001/XMLSchema""http://www.w3.org/2001/XMLSchema">    
    
    <xs:simpleType name="FeedCategory""FeedCategory""FeedCategory""FeedCategory">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:enumeration value="Physical""Physical""Physical""Physical"/>    
            <xs:enumeration value="Virtual""Virtual""Virtual""Virtual"/>    
            <xs:enumeration value="Mixed""Mixed""Mixed""Mixed"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="ExposureType""ExposureType""ExposureType""ExposureType">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:enumeration value="Indoor""Indoor""Indoor""Indoor"/>    
            <xs:enumeration value="Outdoor""Outdoor""Outdoor""Outdoor"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="DispositionType""DispositionType""DispositionType""DispositionType">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:enumeration value="Fixed""Fixed""Fixed""Fixed"/>    
            <xs:enumeration value="Mobile""Mobile""Mobile""Mobile"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="WorkingStat"WorkingStat"WorkingStat"WorkingStatusType"usType"usType"usType">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:enumeration value="ON""ON""ON""ON"/>    
            <xs:enumeration value="OFF""OFF""OFF""OFF"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="StringList""StringList""StringList""StringList">    
        <xs:list itemType="xs:string""xs:string""xs:string""xs:string"/>    
    </xs:simpleType>    
    
    <xs:simpleType name="IntegerList""IntegerList""IntegerList""IntegerList">    
        <xs:list itemType="xs:integer""xs:integer""xs:integer""xs:integer"/>    
    </xs:simpleType>    
    
    <xs:simpleType name="URIList""URIList""URIList""URIList">    
        <xs:list itemType="xs:anyURI""xs:anyURI""xs:anyURI""xs:anyURI"/>    
    </xs:simpleType>    
    
    <xs:element name="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList" type="xs:anySimpleType""xs:anySimpleType""xs:anySimpleType""xs:anySimpleType" abstract="true""true""true""true"/>    
    <xs:element name="URITags""URITags""URITags""URITags" type="URIList""URIList""URIList""URIList" substitutionGroup="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList"/>    
    <xs:element name="TextTags""TextTags""TextTags""TextTags" type="StringList""StringList""StringList""StringList" substitutionGroup="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList"/>    
    
    <xs:simpleType name="LongitudeDouble""LongitudeDouble""LongitudeDouble""LongitudeDouble">    
        <xs:restriction base="xs:double""xs:double""xs:double""xs:double">    
            <xs:minInclusive value=""""----180.0"180.0"180.0"180.0"/>    
            <xs:maxExclusive value="180.0""180.0""180.0""180.0"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="LatitudeDouble""LatitudeDouble""LatitudeDouble""LatitudeDouble">    
        <xs:restriction base="xs:double""xs:double""xs:double""xs:double">    
            <xs:minExclusive value=""""----90.0"90.0"90.0"90.0"/>    
            <xs:maxExclusive value="90.0""90.0""90.0""90.0"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="perCentDouble""perCentDouble""perCentDouble""perCentDouble">    
        <xs:restriction base="xs:double""xs:double""xs:double""xs:double">    
            <xs:minInclusive value="0.0""0.0""0.0""0.0"/>    
            <xs:maxInclusive value="1.0""1.0""1.0""1.0"/>    
        </xs:restriction>    



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 31 / 35  

 

    </xs:simpleType>    
    
    <xs:simpleType name="emailAddress""emailAddress""emailAddress""emailAddress">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:pattern value=""""\\\\w+([w+([w+([w+([----+.']+.']+.']+.']\\\\w+)*@w+)*@w+)*@w+)*@\\\\w+([w+([w+([w+([----.].].].]\\\\w+)*w+)*w+)*w+)*\\\\....\\\\w+([w+([w+([w+([----.].].].]\\\\w+)*"w+)*"w+)*"w+)*"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="NameType""NameType""NameType""NameType">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:pattern value="([a"([a"([a"([a----z_0z_0z_0z_0----9])+"9])+"9])+"9])+"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:simpleType name="OutputDataType""OutputDataType""OutputDataType""OutputDataType">    
        <xs:restriction base="xs:string""xs:string""xs:string""xs:string">    
            <xs:enumeration value="boolean""boolean""boolean""boolean"/>    
            <xs:enumeration value="integer""integer""integer""integer"/>    
            <xs:enumeration value="double""double""double""double"/>    
            <xs:enumeration value="string""string""string""string"/>    
            <xs:enumeration value="array(boolean)""array(boolean)""array(boolean)""array(boolean)"/>    
            <xs:enumeration value="array(integer)""array(integer)""array(integer)""array(integer)"/>    
            <xs:enumeration value="array(double)""array(double)""array(double)""array(double)"/>    
            <xs:enumeration value="array(string)""array(string)""array(string)""array(string)"/>    
        </xs:restriction>    
    </xs:simpleType>    
    
    <xs:complexType name="GeolocationType""GeolocationType""GeolocationType""GeolocationType">    
        <xs:sequence>    
            <xs:element name="Longitude""Longitude""Longitude""Longitude" type="LongitudeDouble""LongitudeDouble""LongitudeDouble""LongitudeDouble"/>    
            <xs:element name="Latitude""Latitude""Latitude""Latitude" type="LatitudeDouble""LatitudeDouble""LatitudeDouble""LatitudeDouble"/>    
            <xs:element name="Elevation""Elevation""Elevation""Elevation" type="xs:double""xs:double""xs:double""xs:double" minOccurs="0""0""0""0"/>    
        </xs:sequence>    
    </xs:complexType>    
    
    <xs:complexType name="ContactInfoType""ContactInfoType""ContactInfoType""ContactInfoType">    
        <xs:sequence>    
            <xs:element name="Website""Website""Website""Website" type="xs:anyURI""xs:anyURI""xs:anyURI""xs:anyURI" minOccurs="0""0""0""0"/>    
            <xs:element name="ContactEmail""ContactEmail""ContactEmail""ContactEmail" type="emailAddress""emailAddress""emailAddress""emailAddress"/>    
        </xs:sequence>    
    </xs:complexType>    
    
    <xs:complexType name="PhysicalComponent""PhysicalComponent""PhysicalComponent""PhysicalComponent">    
        <xs:sequence>    
            <xs:element name="Name""Name""Name""Name" type="NameType""NameType""NameType""NameType"/>    
            <xs:element name="Description""Description""Description""Description" type="xs:string""xs:string""xs:string""xs:string"/>    
            <xs:element name="DescriptionTags""DescriptionTags""DescriptionTags""DescriptionTags" minOccurs="0""0""0""0">    
                <xs:complexType>    
                    <xs:sequence>    
                        <xs:element ref="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList" maxOccurs="2""2""2""2"/>    
                    </xs:sequence>    
                </xs:complexType>    
            </xs:element>    
            <xs:element name="Geolocation""Geolocation""Geolocation""Geolocation" type="GeolocationType""GeolocationType""GeolocationType""GeolocationType" minOccurs="0""0""0""0"/>    
            <xs:element name="Type""Type""Type""Type" type="xs:string""xs:string""xs:string""xs:string"/>    
            <xs:element name="Exposure""Exposure""Exposure""Exposure" type="ExposureType""ExposureType""ExposureType""ExposureType"/>    
            <xs:element name="Disposition""Disposition""Disposition""Disposition" type="DispositionType""DispositionType""DispositionType""DispositionType"/>    
            <xs:element name="SerialNumber""SerialNumber""SerialNumber""SerialNumber" type="xs:string""xs:string""xs:string""xs:string" minOccurs="0""0""0""0"/>    
            <xs:element name="PartNumber""PartNumber""PartNumber""PartNumber" type="xs:string""xs:string""xs:string""xs:string" minOccurs="0""0""0""0"/>    
            <xs:element name="Manufacturer""Manufacturer""Manufacturer""Manufacturer" type="xs:string""xs:string""xs:string""xs:string" minOccurs="0""0""0""0"/>    
            <xs:element name="WorkingStatus""WorkingStatus""WorkingStatus""WorkingStatus" type="WorkingStatusT"WorkingStatusT"WorkingStatusT"WorkingStatusType"ype"ype"ype" minOccurs="0""0""0""0"/>    
            <xs:element name="Efficiency""Efficiency""Efficiency""Efficiency" type="perCentDouble""perCentDouble""perCentDouble""perCentDouble" minOccurs="0""0""0""0"/>    
        </xs:sequence>    
    </xs:complexType>    
    
    <xs:complexType name="VirtualComponent""VirtualComponent""VirtualComponent""VirtualComponent">    
        <xs:sequence>    
            <xs:element name="Name""Name""Name""Name" type="NameType""NameType""NameType""NameType"/>    
            <xs:element name="Desc"Desc"Desc"Description"ription"ription"ription" type="xs:string""xs:string""xs:string""xs:string"/>    
            <xs:element name="DescriptionTags""DescriptionTags""DescriptionTags""DescriptionTags" minOccurs="0""0""0""0">    
                <xs:complexType>    
                    <xs:sequence>    
                        <xs:element ref="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList" maxOccurs="2""2""2""2"/>    
                    </xs:sequence>    
                </xs:complexType>    
            </xs:element>    
            <xs:element name="Type""Type""Type""Type" type="xs:string""xs:string""xs:string""xs:string"/>    
            <xs:element name="Efficiency""Efficiency""Efficiency""Efficiency" type="perCentDouble""perCentDouble""perCentDouble""perCentDouble" minOccurs="0""0""0""0"/>    
        </xs:sequence>    
    </xs:complexType>    



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 32 / 35  

 

    
    <xs:complexType name="OutputType""OutputType""OutputType""OutputType">    
        <xs:sequence>    
            <xs:element name="Name""Name""Name""Name" type="NameType""NameType""NameType""NameType"/>    
            <xs:element name="P"P"P"ProducedBy"roducedBy"roducedBy"roducedBy" type="NameType""NameType""NameType""NameType"/>    
            <xs:element name="Description""Description""Description""Description" type="xs:string""xs:string""xs:string""xs:string" minOccurs="0""0""0""0"/>    
            <xs:element name="DescriptionTags""DescriptionTags""DescriptionTags""DescriptionTags" minOccurs="0""0""0""0">    
                <xs:complexType>    
                    <xs:sequence>    
                        <xs:element ref="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList" maxOccurs="2""2""2""2"/>    
                    </xs:sequence>    
                </xs:complexType>    
            </xs:element>    
            <xs:element name="Type""Type""Type""Type" type="OutputDataType""OutputDataType""OutputDataType""OutputDataType"/>    
            <xs:element name="Unit""Unit""Unit""Unit" type="xs:string""xs:string""xs:string""xs:string" minOccurs="0""0""0""0"/>    
            <xs:element name="HasConfidence""HasConfidence""HasConfidence""HasConfidence" type="xs:boolean""xs:boolean""xs:boolean""xs:boolean"/>    
        </xs:sequence>    
    </xs:complexType>    
    
    <xs:element name="ComponentsType""ComponentsType""ComponentsType""ComponentsType" type="xs:anyType""xs:anyType""xs:anyType""xs:anyType" abstract="true""true""true""true"/>    
    <xs:element name="Physical""Physical""Physical""Physical" type="PhysicalComponent""PhysicalComponent""PhysicalComponent""PhysicalComponent" substitutionGroup="ComponentsType""ComponentsType""ComponentsType""ComponentsType"/>    
    <xs:element name="Virtual""Virtual""Virtual""Virtual" type="VirtualComponent""VirtualComponent""VirtualComponent""VirtualComponent" substitutionGroup="ComponentsType""ComponentsType""ComponentsType""ComponentsType"/>    
    
    <xs:complexType name="FeedType""FeedType""FeedType""FeedType">    
        <xs:sequence>    
            <xs:element name="Id""Id""Id""Id" type="xs:anyURI""xs:anyURI""xs:anyURI""xs:anyURI"/>    
            <xs:element name="Type""Type""Type""Type" type="FeedCategory""FeedCategory""FeedCategory""FeedCategory"/>    
            <xs:element name="Title""Title""Title""Title" type="xs:string""xs:string""xs:string""xs:string"/>    
            <xs:element name="Description""Description""Description""Description" type="xs:string""xs:string""xs:string""xs:string"/>    
            <xs:element name="DescriptionTags""DescriptionTags""DescriptionTags""DescriptionTags" minOccurs="0""0""0""0">    
                <xs:complexType>    
                    <xs:sequence>    
                        <xs:element ref="DescriptionTagsList""DescriptionTagsList""DescriptionTagsList""DescriptionTagsList" maxOccurs="2""2""2""2"/>    
                    </xs:sequence>    
                </xs:complexType>    
            </xs:element>    
            <xs:element name="Geolocation""Geolocation""Geolocation""Geolocation" type="GeolocationType""GeolocationType""GeolocationType""GeolocationType" minOccurs="0""0""0""0"/>    
            <xs:element name="ContactInfo""ContactInfo""ContactInfo""ContactInfo" type="ContactInfoType""ContactInfoType""ContactInfoType""ContactInfoType" minOccurs="0""0""0""0"/>    
            <xs:element name="Components""Components""Components""Components" minOccurs="0""0""0""0">    
                <xs:complexType>    
                    <xs:sequence>    
                        <xs:element ref="ComponentsType""ComponentsType""ComponentsType""ComponentsType" 
maxOccurs="unbounded""unbounded""unbounded""unbounded"/>    
                    </xs:sequence>    
                </xs:complexType>    
            </xs:element>    
            <xs:element name="Outputs""Outputs""Outputs""Outputs">    
                <xs:complexType>    
                    <xs:sequence>    
                        <xs:element name="Output""Output""Output""Output" type = "OutputType""OutputType""OutputType""OutputType" 
maxOccurs="unbounded""unbounded""unbounded""unbounded"/>    
                    </xs:sequence>    
                </xs:complexType>    
            </xs:element>    
        </xs:sequence>    
    </xs:complexType>    
    
    <xs:element name="Feed""Feed""Feed""Feed" type="FeedType""FeedType""FeedType""FeedType" />    
    
</xs:schema>     

 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 33 / 35  

 

8.2 MPEG-7 compliant description of output metadata  

The following sections contain the MPEG-7 compliant description of output metadata stemming from 
AIT’s visual processing feed. 

 

MPEG-7 – body tracker output 

This is an example of the body tracker output in a frame with three targets. 

 
<StillRegion id="SRimg_1225116711.549879.jpg"> 
 <StructuralUnit href="D:\Frames\img_1225116711.549879.jpg"> 
  <Name>Frame</Name> 
 </StructuralUnit> 
 <SpatialDecomposition> 
  <StillRegion id="SR0fromSRimg_1225116711.549879.jpg"> 
   <StructuralUnit href="D:\Frames\img_1225116711.549879.jpg"> 
    <Name>Target with in the frame</Name> 
   </StructuralUnit> 
   <Semantic> 
    <Label> 
     <Name>Relative location of the object</Name> 
    </Label> 
    <Relation source="#Object300" target="#Table" 
type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:Near"/> 
    <SemanticBase id="Object300" xsi:type="ObjectType"> 
     <Label> 
      <Name>Object300</Name> 
     </Label> 
    </SemanticBase> 
   </Semantic> 
   <SpatialLocator> 
    <Box mpeg7:dim="2 2" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"> 
     300 294 30 20 
    </Box> 
   </SpatialLocator> 
  </StillRegion>  
  <StillRegion id="SR1fromSRimg_1225116711.549879.jpg"> 
   <StructuralUnit href="D:\Frames\img_1225116711.549879.jpg"> 
    <Name>Target with in the frame</Name> 
   </StructuralUnit> 
   <Semantic> 
    <Label> 
     <Name>Relative location of the object</Name> 
    </Label> 
    <Relation source="#Object301" target="#Room" 
type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:Inside"/> 
    <SemanticBase id="Object301" xsi:type="ObjectType"> 
     <Label> 
      <Name>Object301</Name> 
     </Label> 
    </SemanticBase> 
   </Semantic> 
   <SpatialLocator> 
    <Box mpeg7:dim="2 2" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"> 
     55 356 100 10 
    </Box> 
   </SpatialLocator> 
  </StillRegion> 
  <StillRegion id="SR2fromSRimg_1225116711.549879.jpg"> 
   <StructuralUnit href="D:\Frames\img_1225116711.549879.jpg"> 
    <Name>Target with the frame</Name> 
   </StructuralUnit> 
   <Semantic> 
    <Label> 
     <Name>Relative location of the object</Name> 
    </Label> 



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 34 / 35  

 

    <Relation source="#Object302" target="#Room" 
type="urn:mpeg:mpeg7:cs:SpatialRelationCS:2001:Inside"/> 
    <SemanticBase id="Object302" xsi:type="ObjectType"> 
     <Label> 
      <Name>Object302</Name> 
     </Label> 
    </SemanticBase> 
   </Semantic> 
   <SpatialLocator> 
    <Box mpeg7:dim="2 2" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"> 
     187 75 20 76 
    </Box> 
   </SpatialLocator> 
  </StillRegion> 
 </SpatialDecomposition> 
</StillRegion> 

Table 1: MPEG-7 fragment including an instance of t he output of AIT’s tracker (notably labels 
and bounding box information for a frame with three  targets) 

This is an example of the body tracker output in a frame with no targets. 

 
<StillRegion id="SRimg_1225116702.025676.jpg"> 
 <StructuralUnit href="D:\Frames\img_1225116702.025676.jpg"> 
  <Name>Frame</Name> 
 </StructuralUnit> 
</StillRegion> 

Table 2: MPEG-7 fragment including an instance of t he output of AIT’s tracker (corresponding to 
an empty frame) 

Notes on the (MPEG-7) Examples 

With respect to the above examples, note that the information about each frame is bundled together 
under a "StillRegion" tag, with an ID corresponding to the filename of that frame on disk. Each frame is 
divided into a list of sub-segments under the "SpatialDecomposition" tag, each sub-segment pertaining 
to a single target and containing the following information: 

• A link to an image filename on disk: It is assumed that these are cropped versions of the 
original frame containing just the target in question, which could be useful when trying to create 
a collage of all detections of a given target. 

• A "Semantic" tag with some simple textual information about the target, namely the target ID 
(which is generated by the Body Tracker to enforce consistency between successive detections 
of the same target across a number of frames); again, this could be used to answer a retrieval 
query of the sort "Give me all frames where 'Person X' appears on the video". 

• A "SpatialLocator" tag, which indicates the location of the target bounding box with respect to 
the whole frame size. Each "SpatialLocator" contains a "Box" element, enumerating the (x,y)-
coordinates [presumably of the upper left corner of the bounding box] and the (width,height) 
pair; all quantities are measured in pixels. 

It also seems possible to integrate "quality" metrics about the tracked targets (e.g. face recognition 
confidence) by using the "PointOfView"/"Importance" tags as follows: 

<PointOfView viewpoint="Importance"> 
    <Importance> 
        <Value>.4</Value> 
    </Importance> 
</PointOfView> 

There is also an element called "DominantColour", which contains information about the most 
prominent colour in a sub-region of the frame (or even the whole frame). This element could be filled by 
a perceptual component dedicated to this task, in order for example to support PRISA use case (which 
foresees colour trends).  



 

FP7-287583 

SMART 

D3.1: Sensors and multimedia data knowledge 
representation  

V0.40 

 

SMART © Consortium 2012 Page 35 / 35  

 

 

8.3 SMART metadata in RDF triples 

The subjects of crowd, any gas from a chemical sensor, environment (from sensor networks) and 
activity (from social networks) are shown, together with their associated predicates. This list is 
discussed in Deliverable 4.1, “SMART Distributed Knowledge Base and Open Linked Data” and will be 
changing as new components are added to the system. 

 

Subject  Predicate  Object  Comment  
Crowd Time Date-Time Measurement time 

Density Numeric Continuous metadata 
Colour Colour spec (integer part) + 

frequency (decimal part( 
Primary horizontal motion Numeric 
Primary vertical motion Numeric 
Motion spread Numeric 
Status Logical Low-level event 
Uniform colour Colour specification 

Audio Level Numeric Continuous metadata 
Applause Numeric Probability of the event 
Crowd Numeric 
Music Numeric 
Traffic Numeric 

Gas Concentration Numeric Continuous metadata 
Limit Exceeding/Normal Low-level event 

Environment Humidity Numeric Continuous metadata 
Temperature Numeric 
Dew point Numeric 
Wind chill Numeric 
Pressure Numeric 
Wind average Numeric 
Wind gust Numeric 
Wind direction Direction string 
Rain since last reading Numeric 
Rain last hour Numeric 
Rain last 24 hours Numeric 
Rain last 7 days Numeric 
Rain last 30 days Numeric 
Is raining Logical Low-level event 
Is hot Logical 
Is cold Logical 

Activity Name String Filtered low-level event from 
social networks isActive Logical 

Date Date this event refers to 
temporalHint Time this event refers to 

 

 


