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1 Executive Summary 

1.1 Scope  

The SMART system is about offering users information fused from the physical world of sensors and 
the virtual world of social networks and Linked Data. The information regarding the physical world 
stemming from different locations is collected by perceptual algorithms operating on sensor outputs. 
This document is about the visual processing perceptual components of SMART. 

This document will be accompanied by a second version, due on end of April 2014. All functionality is 
already described in the current version. The future one will include more testing and fine-tuning on ac-
tual SMART visual data, as explained throughout the document. 

1.2 Audience 

The algorithms generating the visual metadata in a SMART edge node is of interest to a number of 
stakeholders including: 

• Developers of the SMART open source project : SMART open source developers will under-
stand the type of visual processing implemented. Together with the open source versions of the 
systems presented here, already made available to the community in the first SMART software 
release, developers will have at hand both the full algorithms of the proprietary systems and the 
software implementations of their simpler versions. Together the two can be of benefit to the 
developers knowledgeable in video signal processing. 

• SMART project members (notably members working in W P4 but also in WP5 and WP6 of 
the project) : The present document explains how all the metadata presented in D4.1 “SMART 
Distributed Knowledge Base & Open Linked Data Mechanisms” are generated. Understanding 
both documents will allow for project partners to comment on other needs that might arise from 
the examples in these two documents. 

1.3 Summary 

Video signal processing in SMART aims at analysing crowds in outdoor scenes and individuals in in-
doors ones. Crowd analysis regards people as foreground objects and estimates how densely they oc-
cupy the scene at hand, how they move and what colours they wear. Individuals are analysed by track-
ing their faces around the scene. Both algorithm suites are detailed in the following chapters. 

1.4 Structure 

The document is structured as follows: 
• Chapter 2 provides an introduction to the near and far field processing components of SMART. 
• Chapter 3 discusses crowd analysis. The introduction is followed by a detailed account of the 

involved algorithms and their parameters. The effect of these parameters is quantified using the 
introduced F1-score as a metric. 

• Chapter 4 describes face tracking. Again the introduction is followed by the theoretical back-
ground necessary for understanding particle filtering. The performance is evaluated next, with a 
discussion of the different parameters and algorithmic choices possible. 

• Chapter 5 concludes the deliverable and identifies what is to be expected by its next version. 
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2 Introduction 

SMART cameras observe people in cities. There are two distinct modes of observation, dictated both 
by legal and technological constraints. 

The legal constraint has to do with the outdoor versus the indoor use of computer vision systems. Alt-
hough there are some exceptions, in Europe privately owned outdoors computer vision systems are not 
allowed to observe the individual person1, while indoors ones are. Outdoors deployments of computer 
vision systems are only allowed to view the scene from a distance, so that each person occupies only a 
handful of pixels, being unrecognisable. 

The technological constraint has to do with the nature of the scene. Monitoring crowded spaces, where 
each individual is sensed (i.e. initialised and subsequently tracked as an individual entity) is still not 
practical due to initialisation, occlusion and clutter problems. Such scenes result e.g. at the waiting area 
of an airport, when a flight passenger stream emerges or in a crowded square. Normal scenes on the 
other hand allow for person tracking algorithms. Such are the scenes where people only occasionally 
do not appear as visually distinct. 

Far-field sensing of people and vehicles is applied to outdoors scenes and crowded indoors scenes, 
and utilises the crowd analysis algorithms presented in chapter 3. Near-field sensing is applied to nor-
mal indoors scenes, and utilises the face tracking algorithms presented in chapter 4. 

2.1 Video processing within SMART architecture 

Video processing components can be found in the SMART edge nodes. They process signals from the 
cameras and derive metadata describing crowds and people. To do so, every such component runs a 
video processing algorithm to get some results that are supposed to populate feeds in the edge node 
database. Feed population demands that the results are formatted based on the description of the 
feeds. 

The video processing algorithms must be written in C or C++ because they are quite processing-
intensive. They employ third party libraries for basic signal processing blocks. The most widespread 
such library (and the one we use) is OpenCV2. Programming the video processing components in C 
makes communication with the edge node database via the feeds a bit more challenging, since in C 
(unlike for example Java) there is no native way to format the derived metadata in XML/JSON and 
transfer them to the database. Instead custom functions for metadata formatting need to be built and 
the transfer is based on the third party library cURL3. The usage of both these third party libraries for 
simple video processing and feed population is detailed in the tutorial simple_camera perceptual com-
ponent found in the SampleClients\C_PP directory of our open source release and documented in our 
Trac at: http://opensoftware.smartfp7.eu/projects/smart/wiki/simple_camera  

2.2 SMART video systems: public and proprietary 

This document describes the proprietary algorithms and systems for video processing in SMART edge 
nodes. Only the edge nodes operated by consortium members are expected to have these running and 
providing metadata. 

The various edge nodes processing video streams that are expected to be operated by the community 
will not have these systems available. Instead, we are providing open source systems utilizing the 
baseline algorithms discussed in this document. These versions can be found under the SampleCli-
ents\C_PP directory of our open source release and are documented in our Trac at: 

                                                      
1 According to both the Spanish and the Greek Data Protection Agencies (DPA), the combination of camera resolution 
and minimum person distance should be such that the person is not recognizable by a human observer. Our crowd anal-
ysis system adheres to this rule. 
2 http://opencv.org/ 
3 http://curl.haxx.se/ 
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http://opensoftware.smartfp7.eu/projects/smart/wiki/PerceptualComponents. At the final section of the 
next two chapters the current status and the future plans for the open-source versions of the systems 
are outlined. In addition, the community can use this document to understand the proprietary algorithms 
and then build their own versions of the systems. 
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3 Crowd analysis 

3.1 Introduction 

When the cameras are observing spaces where people are expected to form crowds, either indoors 
(shopping malls) or outdoors (squares, parks, or shopping streets), the SMART systems are con-
strained not to observe the individual, but rather the crowd. 

Crowds in SMART are modelled as groups of foreground pixels. Due to the far field nature of the ob-
servation, it is impossible to tell the individual apart in these pixel groups. Instead we employ an algo-
rithm to extract the foreground pixels, and a set of other algorithms to analyse them yielding useful 
metadata for the various SMART applications. 

3.2 Adaptive foreground segmentation 

The chosen foreground segmentation algorithm is a variant of Stauffer's adaptive foreground estimation 
algorithm [Stauffer00]. According to this, a model is built for every pixel in the frame. Gaussian Mixture 
Models (GMM) comprising GMMn  Gaussians each model the different colours every pixel can receive in 

a video sequence. We work on the YCbCr colour-space, assuming the three components independent 
for simplicity. The weight of the Gaussians in the mixture is proportional to the time a particular Gaussi-
an models best the colour of the pixel. By manipulating these weights we estimate the foreground 
patches in the image and we reconstruct a background one. In the following subsections the algorithm 
is detailed. 

3.2.1 Initialising Gaussians 

The first frame of the video is used to initialize the first Gaussian for every pixel. The mean value of the 
Gaussian is the vector describing the colour triplet of the pixel. The variance is initialized to some mod-

erate initial value 2
initσ  (the same for every colour component), to allow colour triples with subtle differ-

ences in same pixel but future frames to still be modelled by the Gaussian. 

Gaussians are also initialized when a colour triple does not match the models for the pixel. In this case 
the next empty slot of the model is used. If the number of Gaussians in the model is already reached, 
then the newest Gaussian (the one with the smallest weight) is deleted and the new Gaussian is initial-
ised in its place. 

3.2.2 Matching and updating Gaussians 

For every new frame, the colour triples of every pixel are checked against the GMM of that pixel for 
possible matching. For this the Mahalanobis distance between every one of the GMMn  Gaussians in the 

model and the triple is calculated and compared to a threshold value GMMd . The Gaussian with the 

smallest distance under GMMd  is selected as the matching one (the one describing the new triple well 

enough and certainly better than any other in the GMM) and is updated. 

Gaussian updating involves the increase of its weight based on the current learning rate of the pixel, 

and the decrease of all other weights in the pixel GMM. The learning rate ( , , )a x y t  depends on the 

pixel coordinates ( , )x y  and the frame time t . The weight update for a matched Gaussian is then: 

 [ ]( , , ) 1 ( , , ) ( , , 1) ( , , )w x y t a x y t w x y t a x y t= − − +  (1) 

and for a non-matched Gaussian is: 

 [ ]( , , ) 1 ( , , ) ( , , 1)w x y t a x y t w x y t= − −  (2) 
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After weight update the Gaussians in every pixel GMM are sorted (in descending order) based on their 
weights. The weights are then re-normalised to unity. 

The Gaussian mean and variances are also updated. Mean update ensures that Gaussians are follow-
ing slow changes to the appearance of the pixel. Variance update leads to narrow models for triples 
that do not vary, while allowing wider models for triples that vary a lot but in small steps. The variances 

are not allowed to drop below a threshold 2
minσ . 

The learning rate ( , , )a x y t  is adapted per pixel and time step [Pnevmatikakis06]: It is increased to 

learn flicker faster in the background, while it is decreased to protect small immobile foreground patch-
es from being learnt too fast. Flicker adaptation is straightforward: very small foreground patches at 

pixels ( , )x y  are considered flicker, in which case the rate is scaled by 1fa > : 

 ( , , ) ( , , 1)fa x y t a a x y t= −  (3) 

Adaptation for target protection on the other hand is only possible if the system has a tracker that vali-
dates the foreground patches as targets and provides their speed. In that case the rate is scaled by a 
factor ( , ) 1pa s v <  that depends on the target’s size s  and speed v . 

3.2.3 Merging Gaussians 

Since the number of Gaussians in the per pixel GMMs is fixed to GMMn , we add a dynamic modelling 

capability by merging Gaussians that although at initialisation were quite apart, they have been drifting 
closer in the colour-space via the Gaussian adaptation process. Gaussians whose means have Euclidi-
an distance less than a threshold merged  are merged together. The new Gaussian has a weight equal to 

the sum of the weights of the two merged Gaussians, while it has mean and variance the weighted av-
erage of the two. 

3.2.4 Foreground from the Gaussian mixture pixel mo del 

Given the current GMM for all the pixels, the Pixel Persistence Map (PPM) PPMI  can be built, in which 

every pixel is represented by the weight of the Gaussian from its GMM that best describes its current 
colour triple. Regions of the map with large values correspond to pixels that have colours that appear 
there for a long time, hence belong to the background. On the contrary, regions with small values cor-
respond to pixels that have colours that appear there for a short time, hence belong to the foreground. 
The unfiltered foreground pixels are those with accumulated model weights for the Gaussians with larg-
er weights than the matching one that is above a threshold τ . These foreground pixels are subjected to 
shadow removal [Xu05] and morphological clean-up to obtain the foreground image frgI . 

The shadow removal employed compares the unfiltered foreground pixel to the background pixel at the 
same location. The background image is estimated as the current frame pixels for the locations the al-
gorithm labels as background, and the mean of the Gaussian having the largest weight for those loca-
tions the algorithm labels foreground. Shadow removal is controlled by two tolerances: The tolerance to 
brightness distortion BD  and to colour distortion CD . Unfiltered foreground pixels that exhibit too 
large brightness distortion, i.e. discrepancy from the background image luminance, are checked for col-
our distortion, i.e. discrepancy from the background image chrominance. Large BD  and CD  toler-
ances lead to fewer pixels being labelled as shadow. 

3.3 Crowd analysis 

In SMART we currently perform static and dynamic crowd analysis based on the foreground image frgI  

estimated by the algorithm discussed in section 3.2. Static analysis provides the crowd density and the 
primary crowd colours, where dynamic analysis is about crowd motion directions. 
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In camera views spanning wide areas it is interesting to split the analysis into regions of interest. In the 
example of Figure 1, there are two such regions: The Santander City Hall square (Plaza Ayuntamiento) 
at the lower part of the frame, and the street (Calle de Jesus del Monasterio) at the upper part of the 
frame. 

The regions of interest are further divided into processing zones for two reasons: 
• The regions of interest can have irregular shapes, as shown for the Santander City Hall square 

region in Figure 1. They are approximated by a number of rectangular processing zones. 
• There is no need to process each area in a zone at the same level of detail: Areas closer to the 

camera can be processed after their pixels are decimated. In the Santander City Hall square 
region there are two such processing zones defined, the near one being processed at a deci-
mation factor of 4, and the far one being processed at a decimation factor of 2. The street re-
gion is described by only one processing zone, where all the pixels are processed (decimation 
factor of 1). 

 

Figure 1: Example of static crowd analysis in two r egions (street and square). The second re-
gion is non-rectangular and is split into two recta ngular processing zones utilising 
different decimation factors (as one zone is nearer  and the other is further away 
from the camera). Foreground pixels are coloured wh ile background are grey with 
reduced brightness. The size of the rectangles in t he colour stripes indicates the 
frequency of appearance of the given colour in the foreground. The green and red 
narrow bars indicate the density of the foreground in the two zones. The video of the 
system can be viewed at: http://www.youtube.com/watch?v=q4HJtkN8Wr8 . 

3.3.1 Crowd density 

Crowd density is estimated from the foreground mask, by counting the pixels in the different regions of 
interest. The active pixels in different rows in the mask are weighted differently, as the distance from the 
camera decreases for rows closer to the top of the frame and hence the size of the objects’ projection 
onto the camera frame reduces. 



 

FP7-287583 

SMART 

Document Code: D3.2.1 

Video Signal Processing Prototypes  

 

SMART © Consortium 2013 Page 11 / 43  

 

An example of crowd density estimation is shown in Figure 2. 
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Figure 2: Crowd density estimation (top) during som e activities at the AIT SmartLab (four ses-
sions of presentations). Example processed frames a re also shown (bottom) dis-
playing the foreground areas and the prominent colo urs. 

3.3.2 Crowd colours 

For some (fashion-related) applications of the live news use case it is useful to know the colours people 
are wearing. For this we perform a colour histogram analysis of the foreground pixels and we report the 
most prominent colours and their frequency of appearance. 

The colour histogram is updated periodically using some memory. Between updates, a temporary col-
our histogram is built for all foreground pixels in all the frames in that interval. The reported colour his-
togram is updated using the temporary one. After the update the temporary is reset to zero. The fre-
quency of the update is unreasonable frequent (every 1,000 frames) in our demo video  
(http://www.youtube.com/watch?v=q4HJtkN8Wr8); it should be closer to daily updates for a real de-
ployment. 

Another example of the colour analysis is given in Figure 2. 

Currently colours are reported in the RGB colour-space, but we will be exploring other perceptually-
optimal ones, as well as compensating for lighting intensity by more crudely quantising the luminance 
component. 

3.3.3 Crowd motion 

The motion of crowds is very important in security applications. There are some directions of motion 
that are important and the system reports if they are exercised. The directions of motion of interest in 
our example are shown in Figure 3. 

Motion vectors are extracted using the traditional block matching approach for every 16x16 block that 
has significant number of foreground pixels and significant texture variation. The former guarantees that 
we are not looking for a match to a background image patch, while the latter that there is significant in-
formation to find a robust motion vector. This is important, as contrary to motion estimation for image 
representation in video compression, here our goal is not to find a very similar block but to understand 
how the block is actually moving. The extracted motion vectors are then compared to the direction of in-
terest vectors by means of their internal product. 
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Figure 3: Directions of motion of interest for the two regions. For the road we are interested in 
motion along its axis, while for the square we are interested in pedestrian crossing 
its length, or moving between the zebra crossing an d its left or right sides. Any other 
direction of interest for an application can be def ined. 

3.4 Results 

The crowd analysis SMART system is intended primarily for outdoors use, even though it is being used 
indoors at the AIT edge node. Outdoors data collection is still a problem for the project. Although the le-
galities have been recently resolved, we do not yet have at hand the SMART outdoor development and 
testing videos. For this reason the system is only superficially tested on a video captured by an iPhone 
from a window of Santander’s Town Hall. The sequence is about ten minutes long and spans quiet and 
busy intervals in the depicted street and square. To quantify the performance of the system and the ef-
fect of the various parameters introduced in Section 3.2, we need to annotate every foreground pixel in 
the sequence. Since the sequence is not the final one to be used for algorithmic development and eval-
uation, we only annotated some frame spanning 100 seconds, obtaining a total of 131k manually la-
belled foreground pixels. This amount of annotation is suitable for the initial tuning and performance 
evaluation of the algorithm. We will repeat this more rigorously in the second version of this deliverable, 
due on month 30. 

In the rest of this section we will be evaluating the performance of our foreground estimation algorithm 
on a per pixel level. We begin by introducing our evaluation metrics and compare our system to the 
baseline implementations. We then we proceed in evaluating the effect of the various parameters intro-
duced in Section 3.2. 

3.4.1 Evaluation metrics and comparison to baseline  

Foreground estimation is actually a two-class classification problem: every pixel is classified in the fore-
ground or the background class. As such, we employ the established metrics of precision, recall, and 
their combination in the F1-score for a single-number performance indicator combining both precision 
and recall [F1score13]. Some definitions are due: 

• True positives TP : The pixels that are classified as foreground and are indeed foreground.  
• False positives FP : The pixels that are classified as foreground but are actually background. 

This is one possible error that system can make. 
• False negatives FN : The pixels that are classified as background but are actually foreground, 

or the missing foreground pixels. This is the other possible error that system can make. 
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• Precision prec  (positive predictive value): The ratio of correctly classified foreground pixels 

over the total pixels classified as foreground, i.e. 
TP

prec
TP FP

=
+

. 

• Recall rec  (true positive rate or sensitivity): The ratio of correctly classified foreground pixels 

over the sum of the correctly classified and the missing foreground pixels, i.e. 
TP

rec
TP FN

=
+

. 
• F1-score: Usually when trying to improve one of the precision or recall, the other worsens. It is 

easier to find a single figure of merit, and this is the F1-score, defined as 
2

1
prec rec

F
prec rec

⋅=
+

. 

The baseline system against which we compare our algorithm is the plain Stauffer implementation, 
where there is no learning rate adaptation, neither Gaussian merging. On top of that we add our im-
provements. The resulting performance is shown in Table 1. 

Table 1: Performance comparison of the various fore ground estimation system versions and 
the baseline Stauffer implementation. 

Additions to Stauffer 

Precision Recall F1-score Notes Rate adaptation Gaussian 
merging Condition Flicker 

No No No 0.1855 0.8979 0.3074 Baseline 

Yes No No 0.2263 0.8524 0.3577  

No Yes No 0.5252 0.8493 0.6490  

Yes Yes No 0.7140 0.7924 0.7512 Dec. 2012 

No No Yes 0.6358 0.8243 0.7179  

Yes No Yes 0.7227 0.7972 0.7581  

No Yes Yes 0.7901 0.7706 0.7802  

Yes Yes Yes 0.8249 0.7640 0.7933 March 2013 

The performance increase over the baseline is 158%, mainly achieved by reducing the false positives. 
The performance increase over the Dec. 2012 (1st year) system that featured only rate adaptation is 
5.61%. The results in Table 1 indicate that either rate adaptation or Gaussian merging grossly improve 
performance, with the former being somewhat more effective. Also, the local rate adaptation for flicker 
pixels learning is more important than the global rate adaptation for change of imaging conditions learn-
ing. 

3.4.2 Effect of Stauffer parameters 

In this subsection we examine the effect of the parameters of the baseline Stauffer algorithm: 

• Number of Gaussians GMMn . The accurate modelling of the background requires some Gauss-

ians, and so does the frequently changing foreground. Hence the performance is expected to 

increase as GMMn  increases, up to the point that the extra Gaussians do not matter anymore. 

Then only the processing requirements increase. The experiments depicted in Figure 4 actually 

show that the performance even drops when GMMn  is increased beyond need. This is due to 

Gaussians of small weights surviving for longer (since there is no need to remove them as 
more slots are available for new ones). So these Gaussians have the opportunity to receive 
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more weight and in extreme cases even enter the background model. Tuning GMMn  is of inter-

mediate difficulty, since performance peaks at the optimum value rather sharply.  

 

Figure 4: Effect of the number of Gaussians in adap tive foreground segmentation. 

• Gaussian model variance (initial 2
initσ  and minimum 2

minσ ). The effect of the two variance pa-

rameters is presented in Figure 5 and Figure 6 respectively. 

 

Figure 5: Effect of the initial variance of a Gauss ian in adaptive foreground segmentation. 
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Figure 6:  Effect of the minimum variance of a Gaus sian in adaptive foreground segmentation. 

The initial variance obviously is an important parameter, with performance peaking at 
2 64initσ = . Tuning 2

initσ  is of intermediate difficulty since the range of near-optimum values is 

not wide. 
The minimum variance on the other hand does not have a significant impact on performance, 
as is evident from the minor and non-monotonic variation of the F1-score of Figure 6. Neverthe-

less, we select the value 2 16minσ =  for which we measure a slight performance peak. Tuning 
2
minσ  is very easy since performance is relatively constant as long as 2 32minσ < . 

• Base learning rate a . This is the rate used when no rate adaptation is involved. The effect of 
varying the base rate is shown in Figure 7. Obviously this is a very important parameter, affect-

ing performance in a smooth manner and peaking at 42 10a −= ⋅ . Although the effect of a  on 
performance is strong, the performance peak is wide allowing for easy tuning of the learning 
rate. 
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Figure 7: Effect of the base learning rate in adapt ive foreground segmentation. 

• Cumulative weight threshold τ . This parameter governs which Gaussians belong to the fore-
ground and which to the background. There is only a narrow range of useful values for τ , as 
shown in Figure 8. Again, this is a parameter with smooth effect on performance, peaking at 

0.65τ = . Tuning τ  is easy since the performance peak is wide. 

 

Figure 8: Effect of the cumulative weight threshold  in adaptive foreground segmentation. 
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3.4.3 Effect of rate adaptation 

In this subsection we examine the effect of two rate adaptation factors: 
• The global rate adaptation factor after a camera or lighting condition change is detected. The 

learning rate is multiplied by that factor, temporarily increasing the learning rate throughout the 
frame. At each new frame the rate drops back by a factor of 2. There is a wide range of near 
optimum values for this factor, as shown in Figure 9. Hence tuning the global adaptation factor 
is easy. 

 

Figure 9: Effect of the global adaptation factor in  adaptive foreground segmentation. 

 

Figure 10: Effect of the local (flicker) adaptation  factor in adaptive foreground segmentation. 
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• The local rate adaptation factor for every foreground pixel considered flicker. Flicker pixels are 
those detected as foreground but forming only very small blobs. The learning rate is locally in-
creased by the multiplicative factor, resulting to the performance of Figure 10. The local rate 
factor is easily tuned since the performance peak is very wide. 

3.4.4 Effect of Gaussian merging 

Finally, in this subsection we examine the effect of the Gaussian merging distance threshold on perfor-
mance. As shown in Figure 11, there is a rather narrow performance peak at a Euclidean distance be-
tween the two candidate Gaussians of 500. Hence the threshold is tuned with moderate difficulty. 

 

 

Figure 11: Effect of Gaussian merging threshold in adaptive foreground segmentation. 

3.5 Open issue: Shadows 

The biggest remaining detrimental factor of the foreground estimation system is shadows. An example 
is shown in Figure 12, where many of the shadow pixels are not actually removed. A better shadow de-
tector will reduce false positives in foreground estimation, further improving precision. Our research in 
the next quarter will involve improving the shadow detector of the system. 

We will attempt better shadow detection (or immunity) by a combination of: 
• Better shadw detection algorithm 
• Different Gaussian modelling of the luminance than the chrominance components (larger lumi-

nance variance) 
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Figure 12: The current shadow detector only removes  some of the shadow pixels. 

3.6 Open-source crowd analysis system 

The system described above remains proprietary to the SMART consortium. To facilitate video pro-
cessing at edge nodes the community sets up, we have already distributed an open-source version of 
the system. This can be found under the SampleClients\C_PP directory of our open source release and 
is documented in our Trac at: 

http://opensoftware.smartfp7.eu/projects/smart/wiki/simple_crowd_analysis 

3.6.1 Current status 

Currently the system only extracts visual density at the different regions specified manually by the user. 
It utilises the OpenCV implementation of the Gaussian Mixture-based Background/Foreground Seg-
mentation Algorithm found in the BackgroundSubtractorMOG2 class [OpenCVMOG2]. 

3.6.2 Future plans 

Our immediate plans foresee the inclusion of: 
• Motion analysis (motion vector extraction, compliance to directions of interest and motion to or 

from a point). 
• Colour analysis (prominent colours). 
• Regions’ and processing zones’ definition tool (define rectangles for zones, associate a deci-

mation factor to each and combine them into regions). 

3.6.3 Limitations 

We do not plan to include any of the following functionality in the open source system: 
• Learning rate increase due to change of illumination conditions or camera movement. 
• Learning rate increase for flicker reduction 
• Learning rate decrease for blob protection 
• Gaussian acceptance threshold adaptation to pixel intensity. 
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4 Face tracking 

4.1 Introduction 

Face tracking is very important for a series of visual processing systems that extract context from video 
signals and offer their users services. The tracks of faces are the most robust cues for the presence of 
humans in a monitored space, especially under clutter where the human bodies are no longer distinct 
[Bernardin09]. In such cases blobs do not yield human bodies, at least distinct ones, and initialisation 
must resort to some detection algorithm like the Boosted Cascades of Simple Features [Viola01] or the 
Histogram of Oriented Gradients [Ding09]. No matter the detection algorithm, faces are easier to initially 
detect in a video, since they flex much less than the body. 

Once obtained by a tracker, face tracks form very important metadata in a variety of applications: 
• Service provision in smart working [Waibel04, CHIL] or living [HERMES] spaces 
• Security and sensitive infrastructure monitoring 
• Enhancing viewers' experience of broadcasted material [Patrikakis10] 

Although in some controlled environments face tracking yields robust results, in more challenging ones 
a tracking system encounters difficulties due to background clutter. The tracker needs face models that 
are robust enough to discriminate the faces from such clutter. These models are of the form of a meas-
urement likelihood given the target state, can be derived from prior knowledge and are usually some-
how updated to retain their discriminating ability over time. 

4.1.1 Tracking background 

A detector is the algorithm that searches for objects of interest in the frame available from the camera 
at a particular instance in time. For the SMART face tracking system, the objects are faces and the de-
tector localises them in any frame. 

A tracker on the other hand is the algorithm that propagates the knowledge about the location of the ob-
ject of interest, termed a target, across time and space as more video frames become available. Both 
algorithms suffer from clutter: human faces are sensed in the presence of multiple competing irrelevant 
signals in the form of image patches resembling or occluding the faces. In this challenging environment 
a tracker needs to utilise all available information from the video sequence, utilising diverse measure-
ment types. Note that clutter with target resemblance is grossly different when we measure different 
things. E.g., a skin-coloured wall will resemble a face a lot under colour measurements, but not at all 
under texture measurements. 

All the relevant information about the target to be tracked is contained in its state vector x . In its sim-
plest form, the state comprises position variables but tracking is facilitated when more information is 
provided, forming a model of the target. Simple models to be included in the state can be the size of the 
target, its orientation, the situation it is in (e.g. facial expression, the person's identity) and its motion 
(velocity, acceleration, type of motion). More elaborate target models include specialised information 
like a colour model. Hence the state of a target can have a large number of dimensions, with elements 
that receive continuous, discrete or binary values. 

Given the state vector at the previous time instant 1n−x  and the sequence of measurement vectors 1:ny  

since time 1 up to the current time n , the tracker estimates the state at the current time instant nx . The 
estimation is usually done in two stages. 

First, all knowledge of the motion habits of the target is utilised. This knowledge is encapsulated by the 
object model. This can be some deterministic kinematic model, such as the constant velocity model, or 
a probabilistic one, introducing the process noise nv  in the target dynamics, expressing uncertainty as 

to its exact nature. The (possibly time-varying) object model nf  shifts 1n−x  into the one-step state pre-

diction nx  that is based only on the knowledge of the motion habits: 

 ( )1,n n n n−=x f x v  (4) 
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The second estimation step is the measurement update. The information of the pixels around the one-
step state prediction is utilised to update the estimate using some video processing measurements. To 
measure around the one-step state prediction, a (possibly time-varying) probabilistic measurement 
model nh  is utilised that connects the current state nx  with the current measurement ny , introducing 
measurement noise nu  to account for the noisy measurement process: 

 ( ),n n n n=y h x u  (5) 

Due to the stochastic nature of the models, the current state nx  becomes a random variable. Stochastic 

tracking (or Bayesian filtering), is the process of estimating the posterior probability density function 
(PDF) of nx , given all the measurement history 1:ny . In effect this is the conditional PDF of the state, 

conditioned upon the evidence, ( )1:n np x y . 

Bayesian filtering can be achieved recursively by estimating the posterior ( )1:n np x y  at time n  from the 

posterior ( )1 1: 1n np − −x y  at previous time 1n −  and the current measurement ny . This is done in two 

steps. First the previous posterior is mapped into the one-step prediction density ( )1: 1n np −x y  utilising 

all the available information about the current state nx , i.e. the previous state 1n−x  and the sequence of 

past measurements 1: 1n−y . This is expressed as the conditional PDF ( )1 1: 1,n n np − −x x y . Then: 

 ( ) ( ) ( )
1

1: 1 1 1: 1 1 1: 1 1,
n

n n n n n n n np p p d
−

− − − − − −= ∫
x

x y x x y x y x  (6) 

where the integration is marginalisation across all possible previous states 1n−x . 

The posterior is then obtained by utilising the most recent measurement ny  and Bayes' rule in the 

measurement update step: 

 ( ) ( ) ( )
( )

1: 1 1: 1
1:

1: 1

,n n n n n

n n
n n

p p
p

p
− −

−

=
y x y x y

x y
y y

 (7) 

The posterior contains all the information necessary for estimating the target state. According to the 
Maximum-a-Posteriori (MAP) estimation, the estimated state is the one that maximises the posterior: 

 ( )( )1:arg max
n

MAP
n n np=

x
x x y  (8) 

According to the Minimum Mean Square Error (MMSE) estimation, the estimated state is the expecta-
tion of nx  conditioned upon the evidence, i.e. the measurement history: 

 ( )1:

n

MMSE
n n n n np d= ∫

x

x x x y x  (9) 

The conditioning upon the past measurement history both in the prediction (6) and in the measurement 
update (7) steps make recursive Bayesian filtering impossible. The conditioning on 1: 1n−y  needs to be 

eliminated from all terms but the given previous posterior; this is achieved by two simplifying assump-
tions for conditional independence: 

• Given the previous state, the current state is independent of the past measurement history. 
• Given the current state, the current measurement is independent of the past measurement his-

tory. 

Then the prediction (6) and in the measurement update (7) steps are simplified [Talantzis12, section 
2.4.1] to: 
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 ( ) ( ) ( )
1

1: 1 1 1 1: 1 1

n

n n n n n n np p p d
−

− − − − −= ∫
x

x y x x x y x  (10) 

and: 

 ( ) ( ) ( )1: 1: 1n n n n n np p p −∝x y y x x y  (11) 

Note that in this form of the recursive Bayesian estimation, the object and measurement models are in-

volved in the form of the object ( )1n np −x x  and measurement ( )n np y x  likelihood functions. 

Usage of the prediction (10) and in the measurement update (11) steps under Gaussianity and linearity 
assumptions yields the Kalman Filter [Talantzis12, section 2.4.2]. In the more general case of non-
linear object and measurement models, their solution is done numerically using the Particle filter [Aru-
lampalam02]. 

4.1.2 Particle filtering background 

Particle filtering is based on two principles: 

• The approximation of distributions with discrete particles: A target distribution ( )p x  can be ap-

proximated by a set of pN  discrete samples ( )ix  and their associated weights 
( )iw . Jointly the 

samples and the weights form the particles, { }( ) ( )

1
,

pNi i

i
w

=
x  [Talantzis12, section 2.4.3.1]. 

• Importance sampling: There are cases where the target distribution ( )p x  can be evaluated for 
any x , but samples cannot be drawn from it. Instead they can be drawn from a proposal distri-

bution ( )q x , yielding the set { }( )

1
,1 /

pNi
p i

N
=

x . For the particles drawn from the proposal distri-

bution to approximate the target one, the weights are calculated as 
( )

( )
( )

( )

( )

i
i

i

p
w

q
∝ x

x
 [Ta-

lantzis12, section 2.4.3.2] 

According to the particle filtering framework, a set of  pN  particles { }( ) ( )
1 1 1
,

pNi i
n n i

w− − =
x  approximating the 

posterior ( )1 1n np − −x y  at time 1n −  is updated to { }( ) ( )

1
,

pNi i
n n i

w
=

x  approximating the posterior 

( )n np x y  at time n . 

Following the mathematical derivation of [Talantzis12, section 2.5], the Sequential Importance 
Resampling particle filter recursion involves the following three steps: 

Draw the updated particles ( )i
nx  from the proposal distribution ( )( )

1,i
n n nq −x x y , after conditioning it up-

on the previous samples ( )
1

i
n −x  and the current measurement ny . The most common choice for the pro-

posal distribution is the object model itself. 

Obtain the current weights ( )i
nw . To do so the measurement model ( )n np y x , the object model 

( )1n np −x x   and the proposal distribution ( )1,n n nq −x x y  are evaluated at the newly drawn samples 

( )i
nx , the previous ones ( )

1
i

n −x  and the current measurement ny , as: 
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( ) ( )

( )
( ) ( ) ( )

1( )

( ) ( )
1,

i i i
n n n ni

n i i
n n n

p p
w

q

−

−

∝
y x x x

x x y
 (12) 

Resample the particles, a process that replaces the samples with very small weights by those with large 
weights. 

The operation of the SIR particle filter is summarised in Figure 13. 

 

Figure 13: Representation of the three steps of the  SIR particle filter recursion. 

Any tracker based on particle filtering comprises: 
• the object model propagating the prior state to the current time instance, 
• the proposal distribution to draw the samples from, which is usually the same as the object 

model, 
• the measurement likelihood for an observation given the state, and 
• the target management for (re)initialization and termination. 

The main innovation of the SMART face tracker is target modelling by three measurement likelihood 
functions suitable for face tracking. We then proceed to fuse the three measurement cues using an ear-
ly fusion scheme into a particle filter tracker, suitable for our non-linear measurement models [Aru-
lampalam02]. 

Secondary innovations of the system involve the measurement-assisted object model and the target 
management approach. 

4.1.3 Face models 

Face modelling approaches based on tracking by detection employ a discriminative classifier. Such a 
classifier can be trained in a batch mode prior to application in a tracking system. Typical examples in-
clude the Boosted Cascades of Simple Features [Viola01] or the Histogram of Oriented Gradients 
[Ding09] classifier. Adverse conditions result in bad framing of the target, which, when accumulated, 
lead to tracker drift and finally target loss. On the other hand the classifier can be initialised and subse-
quently updated. In this case the appearance model of the target is adaptive, with typical example being 
colour modelling [Jaffre03, Jones02]. Traditionally, adaptive modelling involves the use of heuristically-
derived forgetting factors. Recently online multiple instance learning [Babenko09] overcame this prob-
lem by retraining a discriminative classifier. 
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Our approach to overcome the changes of the face and updating appearance models is to use multiple 
models. We employ: 

• a model based on boosted cascades of simple features that drives face detection measure-
ments and is not trained on the target, 

• a colour model that is trained on the target and requires infrequent retraining, and 
• a foreground model that is not trained at all as it only looks for foreground blobs that have 

background on their side and top. 

These models are different in terms of persistence and discriminating ability. Face detection is very dis-
criminative for frontal faces but is very sensitive to poses or occlusions. The discriminative power of 
colour models depends on the colours of the background and suffers from illumination changes and 
target pose changes. Finally, foreground segmentation distinguishes a moving face from the immobile 
background well, but is sensitive to camera motion, background changes and immobile targets. Alt-
hough our standalone models suffer in persistence or discriminating ability, their combination with our 
proposed tracker yields robust performance. 

4.2 Likelihood functions 

In this section we derive the three measurement likelihoods to be used in our face tracker. Dropping the 

time dependence the likelihood functions are ( )p y x , where the measurement y  can is either of: 

• objy  for object presence measurements (face detection in our case), 

• frgy  for foreground measurements, and 

• cmy  for colour matching measurements. 

4.2.1 Object presence 

Object likelihood represents the certainty of object presence at the image patch Ix  corresponding to 

the state x . Ix  is a (possibly rotated) rectangular region of the image. This object likelihood is quanti-

fied by the certainty of an object detection at Ix . The object detector used is a boosted cascade of sim-

ple features [Viola01], grouped in dN  classifier stages. At each stage, there is an increasing number of 

simple features that are selected during training. In the Viola-Jones implementation of the object detec-
tor, these are simple Haar-like features. During testing by the classifier at a given stage, different por-
tions of the candidate image patch Ix  are tested for matching against these Haar-like features. The 

qualities of matching between Ix  and the features are summed for all features in the stage i , yielding 

the sum ( )
is x . Ix  is tested against the classifier at each stage i , if and only if it has been accepted by 

the previous stage. Acceptance by stage i  is granted if the sum ( )
is x  exceeds a threshold value iτ  de-

termined during training. The ratio ( )( ) /i i is τ τ−x  quantifies how easily Ix  is accepted by the classifi-

er in stage i . In practice, this ratio is always smaller than unity. Then, if Ix  is accepted by the classifier 

in up to stage dN N≤ ,  the certainty of object presence is given by: 

 ( )
( )1

0

1 10 10 d

N
i Ni i

obj
i i

s
L

τ
τ

−
−

=

 −= +  
 

∑
x

x  (13) 

It is ( ) [ ]0,1objL ∈x  and ( ) 10 di N
objL −≥x  if Ix  is accepted by the classifier in stage 1i − . It is obvious 

from its definition, that the object presence certainty is largely determined by the ease of acceptance of 
Ix  by the highest stage N  it has been accepted. Secure face detections are those accepted by the fi-
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nal detector stage dN . These have a likelihood largely determined by the last term of the sum, 

( )( )1 1 10.1 /
d d dN N Ns τ τ− − −+ −x . 

To define the object likelihood model, firstly the object is sought around x , by perturbing both the 
space and the size dimensions of the state by an amount of 5% and averaging the resulting object 
presence certainties oL . Then, as justified in [Perez04], the averaged object presence certainty is as-

sumed to be exponentially distributed: 

 ( )
( ) ( )max

2
exp

2
obj obj

obj
obj

L L
p

σ
 ′−

∝ − 
 
 

x
y x  (14) 

where 2
objσ  is the variance of the distribution, 

( )max
objL  is an empirically defined maximum object detec-

tion certainty (which is classifier-dependent), and ( )objL′ x  is a saturated version of the averaged cer-

tainty, such as: 

 ( ) ( ) ( ) ( )

( ) ( ) ( )

max

max max

if 

if 

obj obj obj

obj

obj obj obj

L L L
L

L L L

 ≤′ = 
>

x x
x

x
 (15) 

Small values of the variance 2
objσ  ensure that minor differences in the certainty ( )objL x  are significant-

ly weighted in the likelihood ( )objp y x , thus increasing its selectivity. 

When used in the proposed particle filter face tracker, the detected object is a face and the state x  is 
mapped into the image portion Ix  which is the rectangle defined by the state's centre coordinates and 

size. A typical such region is shown as the red "particle & face detection" rectangle in Figure 14. 

 

Figure 14: Particle, target expansion and backgroun d regions used in the three measurement 
cues, superimposed on a portion of the face and the  foreground evidence image. 

The object presence likelihood depends on the model of the object, as this is described by the object 
detector. This model is trained off-line, and is generic to accurately describe the whole class of similar 
objects. An example is the face detector, trained to detect all human faces. Note on the other hand that 
there exist approaches where the detector is updated, being trained by an on-line version of the boost-
ing algorithm [Babenko09]. In this case, the model is object specific, and can serve to discriminate be-
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tween two different instances of the object class. For example, two faces present can be discriminated 
by the tracker if the detectors for each are updated on-line. 

4.2.2 Foreground 

Foreground evidence is collected from both short-term motion, i.e. the absolute grayscale frame-by-
frame difference dfI , and medium-term motion, i.e. the binary foreground mask frgI  obtained by the 

adaptive foreground segmentation algorithm discussed in Section 3.2. The foreground evidence image 
is then given by: 

 ( )1fev df df PPM PPM frg frgI a I a I a I= + − +  (16) 

where dfa , PPMa  and frga  are scaling constants. The PPM (introduced in section 3.2.4) is the more 

robust term in the sum, while the addition of the binary mask amplifies the effect of motion of significant 
objects in the scene. The frame-by-frame difference term amplifies edges and is important in cases 
where the foreground estimate is corrupted by a recent lighting change, one that has not yet been able 
to be learnt into the background. 

The mapping of the state x  into an image patch Ix  is now done differently. Since the foreground ob-

ject is the head and not the face, Ix  extends beyond the face to the hair region, as shown by the cyan 

"target expansion" rectangle in Figure 14. The foreground evidence for state x  is gathered from the 
equivalent portion of the foreground evidence image fevI  shown on the right portion of Figure 14. To 

force the patch to be large enough to include all the moving object, negative foreground evidence is al-
so collected in a region surrounding Ix , designated I ′x . This is the portion of the surrounding orange 

"background expansion" rectangle not occupied by the red "particle" and cyan "target expansion" ones 
in Figure 14. The background expansion is a significant proportion of the target size; suggested values 
should be around 50% to the left, right and top. The foreground evidence is then defined as: 

 ( ) ( ) ( ) ( ) ( )1 1
frg fev fev

i I i I

L I i I i
A I A I ′∈ ∈

= −
′∑ ∑

x xx x

x  (17) 

where ( )A I  is the area in pixels of the image patch I , and i  is a pixel index for an image patch, de-

noted one-dimensional for notation simplicity. Note that if the regions Ix and I ′x  are non-rotated rectan-

gles, then the foreground evidence is efficiently calculated using the integral image [Viola01] of fevI . 

To define the foreground likelihood model, the foreground evidence is assumed to be exponentially dis-
tributed: 

 ( )
( ) ( )max

2
exp

2
frg frg

frg
frg

L L
p

σ
 ′−

∝ − 
 
 

x
y x  (18) 

where 2
frgσ  is the variance of the distribution, 

( )max
frgL  is an empirically defined maximum foreground ev-

idence, and ( )frgL′ x  is a saturated version of the foreground evidence, such as: 

 ( ) ( ) ( ) ( )

( ) ( ) ( )

max

max max

if 

if 

frg frg frg

frg

frg frg frg

L L L
L

L L L

 ≤′ = 
>

x x
x

x
 (19) 

The foreground likelihood does not depend on any model that is specific to the foreground object being 
tracked. It only employs a general background model that depends on the variations of the pixels in the 
video frames. On the other hand, the background modelling process is not entirely agnostic to objects, 
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since the learning rate of the pixels corresponding to objects is lowered accordingly to decelerate fading 
of foreground objects to the background. 

4.2.3 Colour matching 

Colour likelihood represents the degree of similarity between a colour model of the image patch Ix  cor-

responding to the state x  and the colour model of the target. As in the case of foreground measure-
ment, the image patch is expanded at the top to include the hair region, as shown on the left portion of 
Figure 14. Both models are represented as one-dimensional colour histograms. The similarity is enu-
merated by the Bhattacharyya coefficient between the two models. 

To calculate the histograms, the red ( R ), green ( G ) and blue ( B ) colour components are first quan-

tised to hN  levels and then are combined into a one-dimensional colour quantity ( , , )c R G B , defined 

as: 

 2( , , )
256 256 256

h h h
h h

N N N
c R G B R N G N B

     ≡ + +     
     

 (20) 

where a    denotes the largest integer smaller than or equal to a . The histogram of ( , , )c R G B  is then 

calculated. Since { } [ ], , 0, 255R G B ∈ , the one-dimensional colour quantity ( , , )c R G B  is an integer in 

the range 30, , 1hN … −  , yielding 3
hN  histogram bins. 

The candidate image patch colour histogram xh  is constructed from the pixels in ( , , )c R G B  corre-

sponding to Ix . The colours found there should match the target model, but any others found in the 

immediate surroundings should not, if the target is completely included in the patch. To measure this, a 
"background expansion" rectangle is again introduced, similar to the one used in foreground measure-
ment, but with a smaller expansion factor of around 20% (contrast the orange "background expansion" 
rectangles on the left and the right parts of Figure 14. Another colour histogram ′xh  is constructed from 

the pixels corresponding to a region surrounding Ix , designated I ′x . 

Comparing histograms xh  and ′xh  to the target model one refh  is done using the respective 

Bhattacharyya coefficients. If all of the tracked object is included in Ix , without any background, then 

ideally xh  is similar to refh , while the surrounding colours are different and ′xh  is not similar to refh . 

Thus the colour similarity metric is defined as: 

 ( )
3 31 1

0 0

( ) ( ) ( ) ( )
h hN N

c ref ref ref
i i

L i i i i
− −

= =

′= −∑ ∑x xx h h h h h  (21) 

where ( )ixh , ( )i′xh  and ( )ref ih  are the i -th bins of the candidate image patch, its surroundings and 

the reference histograms respectively. 

To define the colour likelihood model, the colour similarity metric ( )c refL x h  is assumed to be expo-

nentially distributed: 

 ( )
( ) ( )max

2
exp

2

c c ref

c
c

L L
p

σ

 ′−
 ∝ −
 
 

x h
y x  (22) 
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where 2
cσ  is the variance of the distribution, ( )max

cL  is an empirically defined maximum colour similarity, 

and ( )c refL′ x h  is a saturated version of the colour similarity metric, such as: 

 ( ) ( ) ( ) ( )

( ) ( ) ( )

max

max max

if 

if 

c ref c ref c

c ref

c c ref c

L L L
L

L L L

 ≤′ = 
>

x h x h
x h

x h
 (23) 

Since colour similarity is measured using Bhattacharyya coefficients that have a maximum value of uni-

ty, we select ( )max 1cL = . 

The colour likelihood depends on the colour model of the target, refh , as this is trained at initialization of 

the target, and possibly updated during the course of the track. In order to increase the discriminating 
ability of the target model, the reference histogram is trained by attenuating the effect of the colours in 
the immediate background of the target. To do so the "background expansion" rectangle is again used. 
Given the region initI  where the target is initialised and its expansion to the surrounding area, initI ′ , 

three histograms are calculated: inith  from the frame at region initI , exth  from the frame at region initI ′  

and bkgh  from the background estimation at region initI .  The i -th bin of the immediate background 

and surrounding colour histogram is then calculated as: 

 ( ) ( ) ( )

( ) ( )
3 1

0

h

bkg ext
bkg N

bkg ext
k

i i
i

k k
−

=

′ =

∑

h h
h

h h

 (24) 

To attenuate colours that are present in bkg′h  from inith , the histogram bins of the target model ( )ref ih  

are defined as ( ) ( ) ( )ref initi f i i= ⋅h h , i.e. the bin values ( )init ih  are modified by a multiplicative fac-

tor ( )f i  defined as: 

 ( ) ( ) ( ) ( ) ( )min / if /

1 elsewhere

bkg bkg bkg initi i i K
f i

 ′ ′ ′ >= 


h h h h
 (25) 

This factor is smaller than unity, effectively attenuating the respective histogram bin values when the 
respective colour is more evident in the background than in the initialization region. The count of the 
background histogram bin ( )bkg i′h  relative to the target one ( )init ih  to be able to affect ( )f i  is set by 

the constant 1K > . 

4.3 Particle filter tracker 

4.3.1 Particle filter implementation 

The SMART face tracker is built utilising particle filters. The weight for particle x  is updated based on 

the measured likelihood ( )p y x , where y  is any of the object detection, foreground and colour meas-

urements introduced in the previous section. The filter is a Sequential Importance Resampling one, 
where systematic resampling [Kitagawa96] is employed. As a SIR particle filter, the selected proposal 
distribution is the same as the object model. We try three different object models, as discussed in sec-
tion 4.3.2. 

The face detection, foreground and colour matching likelihoods introduced in section 4.2 are combined 
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together into a fused likelihood by multiplying together their clipped versions. Clipping is done at the 
smaller values of the likelihoods, to avoid the very small value of some likelihood voiding the normal 
values of others. Clipping is done at a fraction ck  of the largest value of the particle likelihoods. 

Finally, multiple target management is discussed in section 4.3.3. 

4.3.2 Object model 

Humans, especially when moving indoors, tend to do so unpredictably. Hence a suitable object model 
for tracking people should make only a weak assumption for state evolution. Motion smoothness is 
guaranteed by a Gaussian random walk component centred at the previous state 1n−x , with covariance 

xC : 

 ( ) ( )1 1,n n n np N− −= xx x x x C  (26) 

The covariance matric xC  is not constant. It depends on the estimated target size at the previous time 

step. It is diagonal, with position and size terms being fractions of the estimated target size. The posi-
tion terms have larger fractions of the target size, since targets closer to the camera are expected to 
move faster in terms of frame pixels. 

The object model should also provide for lock recovery after target loss (due to erratic motion or occlu-
sion). This is aided by a uniform component, as in [Perez04]: 

 ( ) ( ) ( ) ( )1 1, 1n n n nRW RW np N U Vβ β− −= + −xx x x x C x  (27) 

where ( )U Vx  is the uniform distribution in some volume V  of the state-space, and RWβ  is the rela-

tive weight of the random walk (multivariate Gaussian) component. RWβ  is usually close to unity, allow-

ing only a few of the particles to abandon the smooth motion of the random walk component and em-
bark into spanning the volume V , trying to reacquire targets that might be lost. The volume V  spans 

four times the standard deviation of the face size in xC . 

Blindly aiming at lock recovery in cases of target loss with a uniform component in the proposal distribu-
tion and the object model has two drawbacks: 

• Subspaces of the state-space are randomly (uniformly) searched for evidence of the target. 
Most of these uniformly distributed particles are finding nothing. 

• Particles are dedicated to the uniform component even when there is no target lock loss. 

It is therefore dangerous to allocate too many of the particles to the uniform component, hence its rela-
tive weight ( )1 RWβ−  in (27) needs to be small and lock recovery is not guaranteed. 

Instead of utilising the Gaussian plus uniform mixture, we build a measurement-assisted object model 
by following the approach of [Perez04] for optimum proposal distribution design: we employ the Gauss-
ian random walk component, plus the contribution of the measurement model in the form of a sum of 
Gaussian densities with relative weight (1 )RWβ− . To establish the contribution of the measurement 

model, a grid gx  around all the particles is searched for the gn  locations  { }( )

1

gnk
g k =

x  of good measure-

ment match. 

At this point we deviate from the approach of [Perez04] in two ways: 
• We use this measurement-assisted proposal for the object model as well, hence the resulting 

particle filter tracker remains an SIR one. 
• We do not use a constant threshold to define good measurement match locations ( )k

gx . Instead, 

we use a fraction gτ  of the best match obtained at the previous time instance, i.e. the maxi-
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mum of the particle likelihoods ( )( )
1 1

i
n np − −y x : 

 ( ) ( )( ) ( )
1 1*k i

n g g n np pτ − −>y x y x  (28) 

• We do not just use colour as the measurement cue employed for modifying the measurement-
assisted proposal distribution. Instead we use all the combinations of face presence, fore-
ground and colour matching measurements employed in our multi-cue visual face trackers to 
find the good matching locations on the grid. 

The locations ( )k
gx  of good measurement match are used to bias the proposal distribution towards 

them. This is achieved by forming a sum of gn  Gaussians centred at the good grid locations and with 

covariance matrices xC . Hence the object model and the proposal distribution are given by: 

 ( ) ( ) ( ) ( )( )
1 1 1

1

1
, , ,

gn
kRW

n n n n n RW n n n g
kg

p q N N
n

ββ− − −
=

−= = + ∑x xx x x x y x x C x x C  (29) 

The difference is performance between the three choices for object model and proposal distribution ex-
pressed by equations (26), (27) and (29) is assessed in section 4.4. 

4.3.3 Target management 

From an algorithmic point of view, a particle filter tracker updates the previous state to the current one, 
represented by a set of particles. From a system point of view, the tracker needs to initialise, maintain 
and eventually terminate multiple targets. Multiple visual targets in the SMART face tracking system are 
handled by assigning an independent Particle Filter (PF) tracker to each of them. 

In this section we describe a loop of the tracking system, i.e. the operations happening with every new 
frame being processed. The tracking algorithm discussed thus far is only a part of the complete system. 

• Coarse face detection: This is carried out only at the foreground parts of the frame, using a re-
stricted set of locations and scales, to ensure fast operation. The set of locations is determined 
from a training sequence and the scale depends on the vertical displacement in the frame. This 
displacement is due to the distance from the camera (which we want to model), but also due to 
the height of the person (which is the unwanted variation, since we want our model to capture 
everybody). The modelling is done by collecting all detected faces from the training sequence 
and finding their size as a linear function of their vertical displacement. At every frame, initialisa-
tion is attempted at some vertical offsets, with nominal size the one given by the model, and 
some more up- and down-scaled sizes around the nominal size. The detected faces are termed 
contacts and are used to initialise or update targets. 

• Target-contact association: Subsequently the contacts are associated with existing targets 
based on the Euclidean distance of their coordinates, normalised by the width of the target. On-
ly pairs not exceeding a maximum association distance are associated. An optimal greedy algo-
rithm, the Hungarian (or Munkres) algorithm [Blackman99] is used for the association. The al-
gorithm minimises the overall distance between the targets and the contacts. In our code we 
use the excellent implementation of the algorithm for C found in [Buehren09]. 

• Target initialisation: Un-associated contacts are used for target initialisation. This involves the 
initialisation of a new particle filter tracker and the training of the target colour model. 

• Target update using contact: Associated contacts are used to update the target. In our current 
SMART system the update involves a retraining of the colour model using some memory. One 
can also consider resetting the target state based on the contact. 

• Target tracking: All targets except those just initialised are tracked using the particle filter track-
er presented thus far. Tracking can also involve updating the target models for some of the 
cues based on the measurement likelihoods of the other cues. Should for instance the object 
detection cue yield a very high likelihood (indicative of the correct tracking of a frontal face), 
then the colour model can be updated. We do not use this mechanism in the current SMART 
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face tracker, since this update is done using the associated contacts. 
• Target hiatus and termination: During tracking the measurement likelihoods for all cues are 

monitored, and the number of consecutive frames where they are too low is counted. The low 
likelihood thresholds can vary linearly between a strict and a loose one, as a function of the age 
of the target. In this way younger targets are handled differently to older ones. When the target 
models do not match well with the evidence collected it is an indication of change in appear-
ance, tracker failure or disappearance of the target from the scene. Targets with momentarily 
low matching qualities enter a hiatus state where they are updated but are not reported, while 
those for which the low quality persists are terminated. Target termination is also based on par-
ticle spread. A large spread indicates particles with no reason to lock in a specific frame loca-
tion, hence they are spread apart by means of the random components of the object model. 
Too large spread indicates lack of target lock in a different way than the measurement likeli-
hood. In cases of measurement ambiguity (e.g. background colours similar to those of the tar-
get), the colour likelihood can be high in a whole frame region but at the same time the particles 
exhibit high spread. 

4.4 Results 

Seven particle filter face trackers are built utilising all possible single, pair and triple combinations of the 
likelihood functions introduced. We also have built a deterministic tracker based on CAM-Shift and a 
baseline colour particle filter tracker. 

 

Figure 15: Example frames in test sequence, the res ulting foreground evidence and the opera-
tion of the tracker. The frames depict normal condi tions, profile face, camera expo-
sure change and occlusion. 

The trackers are tested on an annotated sequence that exhibits face in-plane rotations, out-of-plane 
pose variations, illumination variations and occlusions, as well as global intensity variations due to 
changes in the exposure of the camera. The face is visible (albeit sometimes occluded) in 3,000 frames 
(120 sec at 25 frames per sec). The person moves a lot, hence the standard deviations of the horizontal 
displacement, vertical displacement and size are 191%, 30% and 36% of the average face size respec-
tively. Examples of the conditions encountered in the sequence are shown in the top row of Figure 15. 
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In frame 139 the conditions are ideal: the colour model is only recently initialised, the foreground meas-
urement is noise-free and the pose of the face is easy to detect. In frame 529 the colours have not 
changed, the foreground measurement has some noise (stray pixels) but more significantly the pose is 
profile, making face detection quite difficult. In Frame 670 the colours have changed significantly due to 
the change of the camera exposure. For the same reason the foreground measurement is showing 
many false blobs that need to be learnt back into the background. The face is somewhat diagonally tilt-
ed, but not enough to cause detection problems. Finally, in Frame 764 there is severe occlusion render-
ing detection very difficult, while there is still quite some foreground measurement noise, since only 100 
frames have passed since the exposure change. The occluding hands and the visible upper part of the 
face ensure that colour measurement gives a good match. 

4.4.1 Likelihood sensitivity 

We begin the evaluation of the tracker by considering how sensitive the likelihoods introduced in sec-
tion 4.2 are to offsets around the ideal state. We consider the different situations depicted in Figure 15. 
For this evaluation an offset is introduced in the horizontal direction from the actual face position. The 
likelihoods should drop away from the actual position (offset 0), but should do so rather progressively, 
to be able to attract the particles when they are a bit close. The three single-cue likelihood variations 
are depicted in Figure 16 for colour, Figure 17 for foreground and Figure 18 for face. The foreground 
likelihood is the smoothest of them all, while the face detection one is quite irregular. All of them have 
the profile peak at an offset from the correct position. Finally, the fused triple-cue likelihood is then in 
Figure 19. The fused likelihood has a selectivity that is several orders of magnitude larger that the sin-
gle-cue ones. In all the single-cue (and the fused) likelihoods in the profile case the peak is off-centre, 
which is expected, as the tracker tends to track the head and not the profile face in such cases. 

 

Figure 16: Colour matching likelihood for the four conditions in the example frames. 
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Figure 17: Foreground likelihood for the four condi tions in the example frames. 

 

Figure 18: Face detection likelihood for the four c onditions in the example frames. 
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Figure 19: Fused likelihood for the four conditions  in the example frames. 

4.4.2 Evaluation metrics and comparison to baseline  

We define the relative tracking error as the sum of the square of the horizontal, vertical and size errors 
relative to the face width. We also consider the current face as being tracked if the relative tracking er-
ror is smaller than unity. The hit rate of the tracker is the percentage of frames the face is being tracked. 
The tracking quality is determined by the root-mean of the relative tracking error, averaged over the 
frames tracking is considered successful. 

Given the metrics introduced above, we can quantify the performance of the trackers. Table 2 summa-
rises the hit rate and the relative tracking error achieved by the seven trackers. The latter is given both 
for the frames the tracker operates well and for all the frames. 

Table 2: Effect of the measurement combination to t he particle filter tracker. The measure-
ment-assisted object model and 150% background expa nsion are used. 

Measurements 
Hit rate (%) 

RMS error (%) 

Object presence Foreground Colour matching Total Only at hits 

Yes No No 64.67 198.47 31.87 

No Yes No 81.85 93.89 24.21 

No No Yes 100.0 26.24 

Yes Yes No 88.77 81.47 22.49 

No Yes Yes 100.0 22.12 

Yes No Yes 100.0 15.92 

Yes Yes Yes 100.0 15.39 

Face detection as tracking measurement performs worst since it is the least persistent of all cues; any 
pose variation causes failure. Foreground measurements follow. Even though this measurement is 
quite persistent, lighting changes corrupt the measurement and there is no discriminating ability be-
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tween the face, other parts of the body and moving background. Hence any occlusion of the face can 
force the particles to the body, where they do not spread as there is significant foreground evidence, so 
they cannot easily recover back to the face. Colour performs best since is by far the most discriminant 
cue, even though it lacks persistence when lighting changes occur. 

We then compare in Table 3 the two baseline trackers to the tracking performance we achieved with 
our first face tracker on January 2012 and the latest one of February 2013. 

Table 3: Comparison of the baseline, the early SMAR T and the mature SMART face trackers. 

Tracker 
Hit rate 

(%) 
Total RMS 
error (%) 

Baseline: CAM-Shift 

(Foreground & background colour modelling in Cb,Cr with 16 levels per 
colour component) 

98.58 31.15 

Baseline: Colour PF 

(Foreground only colour modelling in Y,Cb,Cr with 16 levels per colour 
component, Gaussian proposal) 

94.19 49.86 

January 2012 triple-cue PF 

(Foreground & background colour modelling in Y,Cb,Cr with 8 levels per 
component, frame difference only, Gaussian & Uniform proposal) 

95.37 30.89 

February 2013 colour PF 

(Foreground & background colour modelling in Y,Cb,Cr with 16 levels per 
component, Gaussian & measurement-assisted proposal) 

100.0 26.24 

February 2013 triple-cue PF 

(Foreground & background colour modelling in Y,Cb,Cr with 16 levels per 
component, full foreground modelling, Gaussian & measurement-assisted 
proposal) 

100.0 15.39 

Obviously our face trackers exhibit large performance boost compared to the colour PF baseline one 
and significant boost over the CAM-Shift one. Note that the fact CAM-Shift surpasses the early PF 
trackers is artificial. The CAM-Shift tracker was the latest implemented (April 2013), and there we tried 
intensity-invariant colour matching (after the suggestion of DSP2013 reviewers for [Pnevmatikakis13]) 
and a better target re-initialisation scheme. Due to lack of time, these changes have not been included 
in the PF trackers, a task left for the M30 systems to be reported in the second version of this docu-
ment. 

The main differences between our early prototype and the current near-final version are: 
• We underestimated the effect of number of levels per colour component. 8 are too few for a 

good discriminating ability. We do get the latter by using 16. 
• We underestimated the effect of using larger background expansion factors. 
• Pure motion (as modelled by frame-by-frame difference) is not as persistent as the combination 

of motion with foreground modelling. 
• Proper proposal distribution and object model selection plays a significant role in performance. 

In the following paragraphs we consider the effect of these changes and all other tracker parameters in 
detail, using the metrics introduced here. 

4.4.3 Likelihood selectivity: Measurement model var iances 

We begin by analysing the effect of the measurement model variances. Smaller values penalise dis-
crepancies from the respective models, making the likelihood functions very selective. Larger values at-
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tenuate model differences, making the likelihood functions more forgiving to differences. A balance 
needs to be achieved: Selectivity is wanted, or else the particles will spread everywhere in the state-
space, but too much selectivity can give negligible likelihood functions when the target starts appearing 
a bit different than the model. Certainly higher selectivity can be allowed to measurements that are very 
discriminative. 

The colour likelihood selectivity affects colour tracker performance as shown in Table 4 and in Figure 
20. The wanted selectivity balance is easily achieved, as there is an optimum performance range in 
[0.03,0.1]. 

Table 4: Effect of colour likelihood selectivity, a s expressed by colour model variance, on 
single-cue colour tracker performance. 

Colour model 
variance 

Hit rate (%) 
RMS error (%) 

Total Only at hits 

2-1 19.29 859.9 52.33 

2-2 100.0 32.68 

2-3 100.0 26.72 

2-4 100.0 26.24 

2-5 100.0 26.91 

2-6 100.0 27.55 

2-7 93.58 54.08 33.81 

 

Figure 20: Effect of colour likelihood selectivity on single-cue colour tracker performance. 

The situation for the foreground measurement is not as straight-forward, since the tracker locks to hu-
man bodies when the faces are occluded, and the performance remains bad, fluctuating meaninglessly, 
no matter our choice of foreground measurement selectivity. Instead we assess the effect of foreground 
measurement selectivity to the dual-cue colour plus foreground tracker. This tracker yields correct re-
sults and allows the evaluation of the effect of foreground measurement selectivity. The results are 
shown in Figure 21. 
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Figure 21: Effect of foreground likelihood selectiv ity on dual-cue colour plus foreground track-
er performance. 

Finally, the effect of object detection measurement selectivity on the dual-cue colour plus object pres-
ence tracker is shown in Figure 22. 

 

Figure 22: Effect of object presence likelihood sel ectivity on dual-cue colour plus object pres-
ence tracker performance. 

The excellent behaviour at very high object detection selectivity values is justified, since object pres-
ence is the most discriminating measurement of the three, albeit the least persistent. We want the parti-
cles to tightly fit around the state vector that yields high object presence likelihood, since we are certain 

10
0

10
1

10
2

10
3

20

25

30

35

40

45

50

55

60

Foreground measurement variance (σfrg
2 )

T
ot

al
 R

M
S

 e
rr

or
 (

%
)

10
-4

10
-3

10
-2

10
-1

10
0

15

20

25

30

35

40

45

50

55

60

65

Object measurement variance (σobj
2 )

T
ot

al
 R

M
S

 e
rr

or
 (

%
)



 

FP7-287583 

SMART 

Document Code: D3.2.1 

Video Signal Processing Prototypes  

 

SMART © Consortium 2013 Page 38 / 43  

 

that there the tracker operates correctly. When the pose, illumination or expression render object pres-
ence measurement likelihood small, then we wish the particles to spread out, in turn being constrained 
by the other, less discriminative but more persistent measurements. The only exception to this rule is 
when two objects of the same class are close to each other (two faces) or an image patch resembling a 
face is close to the target. Then, should the target no longer resemble the object, the tracker will be ea-
ger to select the false nearby object. This happens with very large selectivity in our tracker, and causes 
the increase of RMS error for very small values of the object presence variance. 

4.4.4 Effect of system parameters 

Having established the effect of likelihood selectivity, we now turn our attention to the various system 
parameters of the face tracker. First we examine the effect of number of histogram levels per colour 
component in the histograms. For this examination we use the colour PF tracker. The results are shown 
in Table 5. As expected, 8 histogram levels per colour component are grossly insufficient. The tracker 
barely becomes stable at 10, while optimum performance seems to be obtained between 16 and 24. 
Larger numbers of levels over train the histogram to the initialisation appearance, reducing discriminat-
ing ability under illumination variations. Since increasing the levels increases both processing and 
memory requirements, we select to use 16 of them. 

Table 5: Effect of the number of levels per colour component in the histograms on the colour 
matching particle filter tracker. 

Levels Hit rate (%) Total RMS error (%) 

8 69.45 208.6 

10 99.57 31.58 

12 99.89 28.53 

16 100.0 26.91 

24 100.0 26.56 

32 100.0 27.38 

Then we examine the effect of the object model and proposal distribution design. For this examination 
we again use the colour PF tracker. The results are shown in Table 6. The success of the proposed 
measurement-assisted scheme is obvious. 

Table 6: Effect of the object model on a colour mat ching particle filter tracker. 

Gaussian Uniform Measurement Hit rate (%) Total RMS error (%) 

Yes No No 100.0 35.18 

Yes Yes No 100.0 32.49 

Yes No Yes 100.0 29.04 

Next we examine the effect of the background colour modelling expansion factor. For this examination 
we again use the colour PF tracker. The results are shown in Figure 23. An expansion between 80% 
and 170% is close to optimum. 
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Figure 23: Effect of the background expansion facto r on a colour matching particle filter tracker 
featuring a measurement-assisted object model. 

The number of particles is the last parameter whose effect is investigated using the colour PF tracker. 
The results are shown in Table 7. It appears that even very low number of particles still result to a sta-
ble tracker. This is good, since the processing requirements of a PF tracker are directly proportional to 
the number of involved particles. On the other hand, we are reluctant to reduce the number of particles 
to extremes, before we further test the tracker in different situations. For the time being we fix the num-
ber of particles to 50. 

Table 7: Effect of the number of particles on the c olour matching particle filter tracker. 

Particles Hit rate (%) Total RMS error (%) 

6 100.0 28.80 

12 100.0 27.12 

25 100.0 26.87 

50 100.0 26.91 

100 100.0 26.67 

Finally, the effect of motion modelling just by frame difference or also including adaptive foreground is 
considered. For this, in Table 8 we compare the motion only, face & motion, colour & motion and the 
face, colour & motion trackers with and without full adaptive foreground modelling. The single cue 
tracker motion tracker is quite unstable, either with frame difference, of with the complete foreground 
modelling. The face and motion dual cue tracker is only stable with foreground modelling, while the in-
troduction of colour, either in the dual or triple cue tracker renders it stable in both cases. Then the use 
of foreground modelling leads to improved accuracy results. Apart from the tracking performance, fore-
ground analysis helps the tracking system in target initialisation, since the face detectors only need to 
run at the areas where there is suitable foreground evidence. Hence we will be employing the full fore-
ground modelling in our face tracker. 
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Table 8: Effect of the foreground modelling in trac kers involving motion and other cues. 

Motion measurement Frame difference Frame difference & foreground 

Tracker 
Hit rate 

(%) 
Total RMS error 

(%) 
Hit rate 

(%) 
Total RMS error 

(%) 

Motion 91.48 62.50 81.85 93.89 

Face & motion 88,88 81.48 81.47 22.49 

Colour & motion 100.0 21.97 100.0 21.96 

Face, colour & motion 100,0 19.24 100.0 18.85 

 

The only situation that colour is performing worse than the rest cues is the occlusion by similar coloured 
object, like the hands shown in Figure 24. There the tracking error for the three cues and their fusion 
are compared, and the frames the moment the face is again fully visible are given. The fusion and the 
face detection recover from the occlusion instantly. Motion follows but colour is much delayed. In fact 
these are the only sources of target miss in the colour cue.  

 

Figure 24: Tracking error and example frames for th e different cues during an occlusion by 
hands. 

The dual-cue trackers involving colour reach 100% hit rate, with the combination with foreground per-
forming best in terms of accuracy. Finally, combining all three cues leads again to 100% hit rate, only 
with even better accuracy. 

4.5  Open-source face tracking system 

The system described above remains proprietary to the SMART consortium. To facilitate video pro-
cessing at indoors edge nodes the community sets up, we plan to distribute some open-source face 
trackers. These will be found under the SampleClients\C_PP directory of our open source release and 
will be documented in our Trac at: 

http://opensoftware.smartfp7.eu/projects/smart/wiki/PerceptualComponents 

4.5.1 Current status 

Currently we have built a CAM-Shift face tracker that utilises the OpenCV implementation of the algo-
rithm [OpenCVtracking]. 
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4.5.2 Future plans 

Our immediate plans foresee the following steps: 
• Include target management and release the first open source version. 
• Prepare a Kalman version. 

4.5.3 Limitations 

We do not plan to include any of our proprietary measurement cues, nor our particle filter implementa-
tions in the open source face trackers. 
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5 Conclusions 

This document details the two visual processing systems used within SMART. The near-field system 
performs face tracking, intended to be used indoors or in restricted environments outdoors. The far-filed 
system performs crowd analysis, by considering crowds as moving foreground pixel blobs. Both these 
systems remain proprietary to the SMART consortium, but simpler, open source versions have already 
been made available. Members of the SMART community that are knowledgeable in visual signal pro-
cessing can use the description of the full versions of the algorithms together with the software imple-
mentation of the simpler versions as a starting point to developing their own crowd analysis and face 
tracking systems. 

5.1 Plans for M30 

The main drawback of this version of the visual processing algorithms’ description is the limited testing 
sequences. Due to factors beyond our control, the development of this version of the algorithms did not 
have a hand the actual SMART visual data. This means that our results in sections 3.4 and 4.4 have 
been obtained after limited testing with the sequences described there. This will change in the second 
version of the document, as the SMART data will be available sometime in the summer of 2013. 

Crowd analysis efforts will focus on speeding up the current implementation, adding a more robust 
shadow detector and performing more types of motion analysis (converging and diverging). 

Face tracking efforts will focus on fine-tuning the target termination criteria and on different strategies 
for fusing the different measurement types. 
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