

SEVENTH FRAMEWORK PROGRAMME

Networked Media

Specific Targeted Research Project

SMART
(FP7-287583)

Search engine for MultimediA
environment

generated contenT

D7.4 Open Source Software Portal

Due date of deliverable: 31-07-2012

Actual submission date: 12-09-2012

Start date of project: 01-11-2011 Duration: 36 months

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 2 / 27

Summary of the document

Code: D7.4 Open Source Software Portal

Last modification: 7/09/2012

State: Final

Participant Partner(s): ATOS,GLA, AIT

Author(s): Iadh Ounis (GLA), Craig Macdonald (GLA), Jose Miguel Garrido
(ATOS), Dyaa Albakour (GLA), John Soldatos (AIT)
Zvi Kons (IBM), Massimiliano Tarquini (S3LOG)

Fragment: No

Audience: public

 restricted

 internal

Abstract: This deliverable accompanies the establishment of the open
source portal of the project at: http://opensoftware.smartfp7.eu/. It
illustrates the selected open source license, along with the gov-
ernance scheme to be applied in the project. Furthermore, it re-
ports on the rationale behind the selection of both the license and
the governance scheme.

Keywords: Open Source, Git, Mozilla Public License (MPL), Master-
Governed Planning

References: N/A

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 3 / 27

Table of Contents

1 Executive Summary ..5

1.1 Scope ...5

1.2 Audience ..5

1.3 Summary ..5

1.4 Structure ...6

2 Overview of the SMART Open Source Project ...7

2.1 Rationale for releasing SMART as Open Source ..7

2.2 Importance and Scope of the SMART Open Source Development Infrastructure7

2.3 Importance and Scope of the SMART Open Source Governance Model ...7

2.4 Importance and Scope of the SMART Open Source Licensing ..8

3 SMART Open Source Development Infrastructure ...9

3.1 Review of Main Open Source Tools ..9

3.1.1 Website ...9

3.1.2 Wiki ...9

3.1.3 Version control and source code repository ...9

3.1.4 Issue tracking ... 10

3.1.5 Mail lists and Forums ... 10

3.1.6 Public project hosting (“Forges”) .. 10

3.1.7 Self-hosted forges .. 12

3.2 Public websites and Self-hosted tools .. 12

3.3 Public and semi-public strategies ... 12

3.3.1 Public development.. 12

3.3.2 Semi-public Development .. 13

3.3.3 Strategies and tools ... 13

3.4 Recommendations and Selection ... 14

3.4.1 Git repository .. 15

3.4.2 Trac .. 16

3.4.3 Technical implementation .. 17

4 SMART Open Source Governance .. 18

4.1 Open Source Governance Methodologies and Collaboration Schemes .. 18

4.1.1 Collaborative planning ... 18

4.1.2 Master-governed planning ... 18

4.1.3 Use Cases ... 19

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 4 / 27

4.2 SMART Project Constraints, Recommendations and Selection ... 20

4.2.1 Constraints Associated with the Governance of the SMART Open Source 20

4.2.2 Recommendation and Selection .. 20

5 SMART Open Source Licensing .. 22

5.1 Open Source Philosophies ... 22

5.2 Main Open Source Licensing Requirements of the SMART Consortium ... 23

5.3 Open Source Licenses Considered by the SMART Consortium .. 24

5.3.1 GPL .. 25

5.3.2 LGPL .. 25

5.3.3 MPL .. 25

5.3.4 BSD & Apache ... 26

5.4 Recommendations and Selection ... 26

6 Conclusions .. 27

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 5 / 27

1 Executive Summary

1.1 Scope

SMART is developing an innovative multimedia search engine (along with an associated search framework)
for environment generated content. Among the main objectives of the SMART project is to ensure the open-
ness of the search framework, which will guarantee its extensibility in terms of (physical and virtual) sensors,
sensor processing algorithms and presentation elements. As part of this objective, SMART will be releasing
the implementation of its search framework as open source software (OSS). At the same time, SMART will
endeavor to create and build up an open source community around the main SMART results. The develop-
ment of this community hinges on the specification of a set of processes and tools that will support the build-
ing up, the collaboration and the governance of the community of the developers and the users of the
SMART open source software. The purpose of the present deliverable is to present processes and tools as-
sociated with the setup, management and governance of the SMART open source community. In particular,
the deliverable covers the following topics:

• The ICT tools that will be used in order to host and manage the SMART open source software project,
including an open source software portal, a software versioning system, as well as tools for software
documentation and contributors’ collaboration.

• The processes that will be used for governing the SMART open source community. These include the
main roles and responsibilities associated with the evolution of the SMART software and the regulation
of the relevant contributions.

• The licensing scheme selected for the SMART open source project, which plays an important role for the
future exploitation and sustainability of the project.

For all the above topics the deliverable illustrates the various options that were considered, along with the
criteria that drove the final selection.

1.2 Audience

The target audience for this deliverable is manifold and includes:

• The members of the consortium, notably the consorti um members involved in the setting up of
the SMART open source project : The decisions presented in this deliverable will be taken into account
by the SMART consortium members towards setting up the SMART open source project. Note that as
part of this deliverable the consortium has also setup its open source portal, in line with the decisions
presented in this document, which is the report that accompanies the open source portal implementation.

• The open source community : SMART intends to build a community of open source developers and
users, which will (respectively) engage in the development/enhancement and use of the SMART open
source project. The topics of the present document are therefore of interest to SMART users and/or de-
velopers, who would like to acquaint themselves with the SMART open source processes and tools.
Note however that the information contained in this document will be also available on-line in the scope
of the open source portal of the project.

1.3 Summary

This report is part of the deliverable D7.4, which deals with the setup of the SMART repository of open
source code, and of the associated tools and techniques for open source development. The reports deals
with three important aspects/choices of the SMART open source software, namely: (a) the selection and set-
up of the appropriate environment and tools, (b) the selection of the open source licenses of the project and
(c) the selection of a proper governance scheme for the SMART open source project and relevant communi-
ty. For all three selections/choices, the deliverable illustrates possible options and justifies the final selection

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 6 / 27

of the SMART consortium. In terms of the open source development environment, SMART has setup a
hosted web portal (available at: http://opensoftware.smartfp7.eu/). The portal comes with a range of popular
tool facilitating development. In terms of licensing scheme, the consortium has opted for the Mozilla Public
License (MPL), with a view to ensuring compatibility with background libraries used, while boosting possibili-
ties of commercial exploitation of the SMART open source platform. Finally, in terms of the open source
community governance, the SMART partners have specified a master-governed planning scheme, which
emphasizes the leading role of a master (in the SMART case corresponding to a certain partner) in the evo-
lution of SMART components or subprojects. The SMART consortium has appointed «master» partners for
the two main subjects comprising the SMART system, namely the SMART edge node and the SMART
search engine (based on the Terrier.org) search engine. The selected governance approach aims at facilitat-
ing integration and robustness at the early stages of the project. The consortium does not rule out changes
or revisions to this governance scheme. The details of the selected licensing and governance schemes are
described in later paragraphs of this document.

1.4 Structure

The deliverable is structured as follows:

• Section 2 illustrates the importance of the main processes that comprise the setup of the SMART
open source project.

• Section 3 illustrates the ICT tools that comprise the SMART open source infrastructure, including the
SMART portal, software version system and collaborative tools.

• Section 4 describes the processes that will ensure the proper governance of the open source com-
munity of the project.

• Section 5 reports on the process that led to selection of the SMART licensing scheme (based on the
MPL license). The process includes the review/survey of popular licensing schemes for open source
projects and their subsequent comparative analysis against the requirements of the SMART project.

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 7 / 27

2 Overview of the SMART Open Source Project

2.1 Rationale for releasing SMART as Open Source

SMART is developing a search engine for multimedia environment generated content i.e. content derived
from multiple sensors deployed at the physical environment, along with content stemming from social net-
works feeds processing. Among the objectives of the project is to create the search engine on the basis of
an open and extensible framework that provides flexibility in terms of the physical and social sensors data
streams to be integrated and searched. The rationale behind the openness of the framework is to allow third-
parties (beyond the developers of the SMART consortium) to enhance the search engine on the basis of
novel sensor processing components, reasoning algorithms and search applications. In order to pursue and
accomplish this objective, SMART will release a major part of its software as open source. The open source
nature of the SMART project is expected to drive a number of other benefits as well, in particular:

• It will allow for community development of the SMART software, which could lead to improved software
quality, while at the same time boosting the sustainability and technological longevity of the project.

• It will provide a software blueprint for building non-trivial applications that leverage environment generat-
ed content. This blueprint could be exploited by enterprises in order to build added-value search applica-
tions in areas such as news, media, security and surveillance.

The decision to implement SMART as open source should be accompanied with key decisions associated
with the tools and processes that will support the open source project. These tools and processes concern
three main areas in particular:

• The selection of the ICT tools comprising the SMART open source development infrastructure.

• The governance scheme and processes of the SMART open source project.

• The license of the open source project.

The importance of these areas is outlined in following paragraphs. Note that several SMART partners have
experience in setting up and contributing to open source projects, which has greatly facilitated the process of
taking decisions associated with tooling, governance schemes and open source licenses. In this respect the
contribution of partner GLA (who is the founder and main contributor to the open source Terrier.org project)
has been substantial.

2.2 Importance and Scope of the SMART Open Source D evelopment Infrastructure

Open source projects involve smaller or larger communities of developers that engage in the design, produc-
tion and documentation of software libraries comprising the open source project. These communities operate
on the basis of a range of ICT tools, which provide documentation, collaboration, software versioning capa-
bilities and more. The selection of these tools can therefore be crucial for the productivity of the open source
community. Nowadays, there are several popular tool-suites, which can be used stand-alone or on-line.
SMART has reviewed several tools and accordingly selected the ones that suited its needs. More details are
provided in Section 3 later in this document.

2.3 Importance and Scope of the SMART Open Source G overnance Model

The governance model is another important element of an open source project. It specifies roles, responsibil-
ities and processes regulating the activities of the open source community. Governance is particular crucial
when it comes to specifying the process of ensuring the quality of software contributions, as well as when it
comes to integrating those contributions within the open source code base. A main challenge associated
with open source governance is the proper balancing between collaboration and quality of integration. This is
because collaborative models boost collaboration and democratic decisions, while at the same time the ex-
istence of integration masters can better ensure the quality of the integration. Section 4 of the document il-

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 8 / 27

lustrated the selected SMART governance model.

2.4 Importance and Scope of the SMART Open Source L icensing

The selection of the licensing scheme of the SMART open source project has also been an important deci-
sion for the project, given that is has significant impact on the project’s exploitation and sustainability strate-
gy. Hence, the selection of the SMART open source licensing has considered a variety of factors including
the partners’ exploitation intention, but also compatibility and reuse of other open source libraries (such as
the Terrier.org search engine which is a crucial element of the SMART open source project).

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 9 / 27

3 SMART Open Source Development Infrastructure

In this section we present the SMART Open Source Development Infrastructure. However, we also outline
some considerations the main options considered prior to make the ultimate selection.

3.1 Review of Main Open Source Tools

3.1.1 Website

Any open source software project requires a web presence that can be accessed globally and should at least
describe the project, identify its purposes and maintain the latest releases of the project (zip, .tar.gz etc).

It should also provide the necessary links for the documentation and any other tools used for the develop-
ment of the project to help anyone learn more about it and enable those interested to become part of the pro-
ject community and contribute to its development.

In the case the SMART project, we have the home page of the project in www.smartfp7.eu. The web page
for developers will be a subsection of the home page.

3.1.2 Wiki

A recent trend is using a wiki for the instructions and help about the application, working as the main part of
the web page. There are several websites that offer free wiki service.

• Wikia (http://www.wikia.com) uses MediaWiki software.

• Wikispaces (http://www.wikispaces.com/) for educational purposes.

• Wikidot (http://www.wikidot.com) section for groups and collaboration

Apart from these specialized “wiki farms”, the “forges” usually feature their own wiki functionality (see section
3.1.6)

On the other hand, these are various wiki software packages that can be installed in any server by the de-
velopers (self-hosting):

• Mediawiki 1 – software used by Wikipedia, written in PHP.

• MoinMoin 2 – python wiki platform, used by Apache Consortium and Terrier. Can support pri-

vate wiki pages.

• Confluence 3 – closed source wiki platform from Atlassian.

In addition to the help displayed on the wiki, it is necessary to display the automatically generated JavaDoc
for the API of the library. It is only static html information, so the project home page could be used.

3.1.3 Version control and source code repository

There are two main alternatives for version control are centralized and distributed systems. The two com-
monly used tools for those two options are Subversion and Git respectively:

Subversion (SVN) :4 The traditional solution, used in thousands of projects and supported by all devel-

1 http://www.mediawiki.org/wiki/MediaWiki
2 http://moinmo.in/
3 http://www.atlassian.com/software/confluence/overview

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 10 / 27

opment tools. The main problem is that its way of working is obsolete, especially for big, collaborative
projects. SVN is only an evolution of CVS, and CVS was an evolution of the first system, RCS.

Git 5: is a relatively new system designed by Linus Torvalds. After testing existing open tools, none was
good enough for developing the Linux kernel, and the commercial tool BitKeeper changed its terms of
use. Git features a distributed model; more advanced that the client-server approach of SVN and CVS.

Other common free version control systems are Mercurial, Bazaar, Monotone or Arch. They use the
same distributed philosophy as Git. Therefore the decision of choosing a version control system is usu-
ally making a choice between the classic SVN/CVS systems and the new Git philosophy.

3.1.4 Issue tracking

The issue (or bug) tracking systems maintain a list of bugs, new features or pending issues in general. Popu-
lar systems include:

• Bugzilla : (http://www.bugzilla.org/): it is both a portal and an installable application.

• Jira (http://www.atlassian.com/software/jira/overview): a commercial product, but free for open pro-
jects. The main advantages are of Jira are:

• Customizable workflows.

• Code integration, including with GitHub

• Fancy reports and statistics.

• Trac (http://trac.edgewall.org/): an enhanced issue tracker that nowadays offers integration with SVN
or Git, and with a wiki. The main advantage is that is possible to add cross references between is-
sues, code and wiki pages. It is open source, so it is possible to use it self-hosted, the same as
Bugzilla.

3.1.5 Mail lists and Forums

The Mailing list helps the community to use email as a communication medium for supporting the community
and end users (e.g. ask for help or documentation) or to collaborate on the development of the project (e.g.
discuss issues/bugs that need to be resolved). Mailing lists can be used in combination with the aforemen-
tioned tools such as the wiki, the issue tracker or the forum. The problem with mailing lists as support tool is
that the number of messages can grow quickly as the number of users increases, so usually another solution
is needed for a mature community.

Forums are good tools for supporting external users. The forum is really important from the last stages of the
development, when the project is used by people not in the project.

Some of the functions of the forum are better covered by the issue tracking system, but usually we can’t ex-
pect that all the users are able to create an issue report. Some open source projects receive a lot of useful
bug reports using the issue tracker directly, but the forum is a more “human-friendly” way of providing bug
reports and support to users.

In the Terrier project, the forum has been more successful than the mailing list – it has the advantages of not
spamming users’ inboxes, which is important for a support role. Users mostly submit forum posts and when
they are identified as bugs, the moderators of the forum ask them to post an issue to the bug tracker, or they
post the issue themselves.

The main disadvantage of forums is that they can be a bit chaotic and usually the forum needs one or more
moderators.

3.1.6 Public project hosting (“Forges”)

One popular option is to use “forges” which are repositories for open source hosting. Usually they offer code

4 http://subversion.apache.org/
5 http://git-scm.com/

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 11 / 27

hosting and many other tools previously discussed open source software development, trying to offer an in-
tegrated environment for the developer.

SourceForge (https://sourceforge.net/) was the first and even today it is the biggest of the forges. Recently,
they have launched a “new” SourceForge 2.0 with new characteristics, as a Wiki or Git.

• Code Hosting

• Issue tracking (now called tickets)

• Wiki

• Forum

• Blog

• Mailing lists

• Subversion and Git

SourceForge is a web-based source code repository, which centralizes the development and management
of open source software. A common criticism is the unintuitive navigation, it easy to get lost in the pages.

GitHub: A commercial forge, but free for open source projects.

• Code Hosting

• Issue tracking (Jira can use GitHub)

• Wiki (using their own system)

• Teams

• Git (also SVN)

The main advantage of GibHub is that they have very good review characteristics for the code. In the other
hand, it is not possible to create private zone, because that is the feature that GibHut sells to clients
(http://marmoush.com/2011/10/04/sourceforge-vs-github-2011/). GitHub is surpassing the alternatives in
popularity (http://www.readwriteweb.com/hack/2011/06/github-has-passed-sourceforge.php). Several devel-
opers recommend GitHub, but usually is a matter of “taste” or “feeling” more than a rational thing.

Google Code : (http://code.google.com) has all the good characteristics (Wiki, issue tracking, Git and SVN).
It hostess many Google or Android related projects, but it is open to all open projects. A key advantage is the
simplicity.

It is evolving to be part of the general infrastructure for developers (https://developers.google.com/)

Apart from these forges, there are several others. Usually the features are a bit more limited and the mission
is more specialized, but probably any of these owns merits enough to be a good alternative if needed.

• Alioth (http://alioth.debian.org/) is based over FusionForge. It is intended mainly for projects related
to Debian.

• GNU Savannah (http://savannah.gnu.org/) is quite similar, intended for projects of the FSF.

• BerliOS (http://www.berlios.de/) is infrastructure depending from Fraunhofer that offers several ser-
vices for open source developers, including a forge.

• CodePlex (http://www.codeplex.com/) is the forge for open source developers using Microsoft prod-
ucts.

• Gitorious (http://gitorious.org/) is another good forge based around Git.

• JavaForge (http://www.javaforge.com/project/11) is a full featured forge for projects not only using

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 12 / 27

Java.

• JoinUp (old OSOR.eu) (https://joinup.ec.europa.eu/) is an EC portal for open source solutions for
public administrations, and includes a forge.

• LaunchPad (https://launchpad.net/) is sponsored by Canonical Inc and it is quite related to Ubuntu.
They use Bazaar instead of SVN or Git

3.1.7 Self-hosted forges

With self-hosted forges, the initial originators of the project need to set up a server and install the forge for
open source development. They also need to maintain the forge afterwards.

FusionForge is a self-hosted forge based on the public SourceForge. Fusion forge integrates several
other utilities to offer the basic services that the “classic” Source Forge offers: code hosting (both SVN
and Git), issue tracking, forum, user management and even a wiki. The forge is available to deploy pri-
vately via a package for Ubuntu, but the installation typically requires various customizations.

Other possible option is to choose some tools and integrate it, creating a “forge” with the needed tools.

3.2 Public websites and Self-hosted tools

As we see in the last section, for each tool, usually we find the possibility of using a public website, like
Github, or self-hosting the tools.

In this last case, a website is created for the project and each individual tool such as the code repository or
the wiki is deployed on-demand as a standalone part of a greater website. The advantages and disad-
vantages of such a process are as follows:

Advantages

• The project can maintain all tools within a single website umbrella, thereby ensuring uniform
branding.

• The project has flexibility in choosing the suitable tool for the project needs.

Disadvantages

• Increased cost of installing/maintaining separate tools.
• Hosting costs. A very popular project can be downloaded by many people, and the network traf-

fic and hosting infrastructure cost can be very high.
• Possible lack of integration. For instance, multiple logins for different tools can confuse users.

3.3 Public and semi-public strategies

We identify two main streams of development strategies both rely on the same principia but differ in objec-
tives and management, namely public development and semi-public development. These development
strategies mainly differ in the degree of openness to the community.

3.3.1 Public development

In this strategy, the source code (especially the source code repository) is publicly available at all times
throughout the life-cycle of the project. The development process is entirely transparent to the active contrib-
utors as well as to the wider community, i.e. any interested individual or organization would have access to
the source code and the development process and they may also become part of the process and contribute
to the project and the source code.

For example, the popular Apache6 software foundation has built a community that developed a number of

6 http://www.apache.org/

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 13 / 27

open source software products using this strategy.

Advantages:

• The entire development process is open to the community and they become stakeholders of
the project.

Disadvantages:

• Initial originators of the project (in our case, the consortium) have less control on the visibility
of the planning and development process, as it is open to the entire community and anyone
can be become part of the planning and management process.

• Any code mistakenly committed by a developer has defacto been released, as it will always
be available in the source code repository.

3.3.2 Semi-public Development

With this strategy, the project is managed by a number of individuals or organisations that may hide parts of
the development process or source code from the wider community of contributors and/or users. For exam-
ple, incremental releases are made available to public but private releases that contain un-disclosed code
may be kept private to the managers. This allows decisions on what components need to be kept private to
the initial originators.

The Terrier platform is developed with this strategy where public releases are always available and contribu-
tions from the entire community are welcome but the source code repository is kept private, and releases are
planned and prepared in private.

The OpinionFinder project7 is an extreme example of the strategy where the planning, management and the
contribution to the source code are only done by the originators of the project and the releases are available
to the community. Another example is MySQL.

Advantages:

• The initial originators, in our case the consortium, retain full control on the management and
planning process and its visibility to the community.

Disadvantages:

• The community is less involved in the planning process.
• No committers outside of the consortium.

3.3.3 Strategies and tools

The strategy is important because it limits the possible elections. The tool or set of tool chosen must be able
to implement the strategy. Most part of public tools, like Source Forge or GibHub, are clearly oriented for a
public development strategy, and they don’t offer private repositories or they ask a fee for it.

But a public website can be used in a semi-public strategy, providing that the source code repository is self-
hosted. A common tendency is a semi-public strategy, combining a self-hosted development with the use of
Google Code for distributing the public releases.

In the case of SMART, the development team is distributed, so the source code repository must be available
using Internet for the developers. As the repository must be available, it is possible to use the same server
computer for hosting other tools.

7 http://code.google.com/p/opinionfinder/

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 14 / 27

3.4 Recommendations and Selection

According to the semi-public strategy, some parts of the portal must be only accessible by the developer
team. As we stated in section 3.3.3, this make a self-hosted portal a sensible alternative, so the implemented
solution is a self-hosted web portal.

• We can offer all the assets related to the project under a unified brand, our smartfp7.eu domain.

• Allow most liberty of election for the tools

• More flexible, we can create as many repositories/sub-projects as needed, and we can define
fine-grained access policies access according to different purposes.

• It is possible to use the same repository for the non-open source parts of SMART.

The portal is installed in the server opensoftware.smartfp7.eu . The solution is implemented mainly using two
open source tools:

• Trac

• Git

(See sections 3.4.1 and 3.4.2 for more details about Git and Trac)

Figure 1: Main page of an example portal implemente d using Trac

Some other services are available in the portal:

• A general purpose web server : It resolves the problem of publishing documentation automati-
cally generated from the source code. The results from tools as JavaDoc are directly publisha-
ble as web pages.

• Some mail list for SMART developers: we have currently using some mail lists in the SMART
project, mainly for consortium members. As we state previously, as the number of developers
grows, the mail list become less useful, so we can implement a forum in the future if needed.

• A WebDAV repository: Some files and contents are not suitable for the code repository, which
as its own name implies, it is optimized for source code. But at the same time, it is important to
share it with other developers because a complete system needs these files. Videos, sound
contents large binary files in general are the best examples. Usually a FTP server was em-

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 15 / 27

ployed, but a WebDAV repository is a better solution, and it is more suitable for integration in
the web portal.

Particular effort was put about the integration of users, one of the traditional problems of the use of several
tools at the same time. In this case, the tool election and the configuration it is tailored in a way that it is pos-
sible to use the same user/password for accessing Trac, Git or WebDAV.

3.4.1 Git repository

As we stated in section, Git is more advanced than SVN, Git uses a new approach that overcome some of
the old limitations of the traditional SVN/CVS philosophy.

Advantages

• Git is distributed; each developer has his own local repository and each repository can commit
changes in the code with each other, not only with only a central repository.

• Git has a better a mechanism for creating and merging branches. Git allows a non-linear devel-
opment workflow. In the case of SMART, the developers can use a private repository for every-
day work and upload complete releases to a public repository

• As Git is distributed, the failure of a central repository is not a problem.

• A Git repository can communicate using several pre-existent protocols, like http or ssh.

• One of the main requirements of Git was the speed. Git is able to work with really complex pro-
jects, like the source code of the Linux kernel. Git is clearly quicker than SVN, especially for big
repositories.

Disadvantages

• A problem with Git is that the developer needs to change their way of thinking8, by having to
use a local repository, after many years of taking SVN/CVS as reference.

• Git was invented for the use in a Linux environment and it is implemented at low level using
Unix system calls. Therefore, porting Git to BSD and Mac OS X was straightforward, but the
implementation of Git for Windows was not direct. In any case, some solutions appeared; so it
is not especially difficult to use Git in windows nowadays.

Figure 2: Example of tool: TortoiseGIT for Windows

8 https://git.wiki.kernel.org/articles/s/v/n/SvnMigration_f3dd.html

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 16 / 27

As we stated before, given the distributed character of Git, each SMART developer will need to install a local
Git repository in his/her computer. The Git repository hosted by the project is only a point of encounter for the
communication between different developers; it is not really a central repository in the SVN sense.

3.4.2 Trac

We call Trac an issue tracker in the section 3.1.4, but Trac goes further than Bugzilla or other issue trackers,
it is a complete tool for project management. Trac gives us a very complete set of features:

• Issue tracker: Trac features all the characteristics of a modern issue tracker. We can create “tickers”,
assign it to a developer, add more information or attach files to the ticket, change the state of the
ticker o generate a report.

Figure 3: Issue tracking in Trac

• Wiki for internal: Trac is also a wiki server. Trac has all the characteristics of a modern wiki, and it
uses the syntax from Moin Moin, a wiki system used by Terrier.

• Wiki for external: We can also use the wiki characteristics for creating a public repository for external
developers of the SMART system.

Figure 4: Trac as a wiki: editing an article

• File repository: the wiki can store some files, for instance a PDF or a MS Word.

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 17 / 27

• Source code browser for Git: We can see the source code in the repository using a web browser.

Figure 5: Code browser

• Project management: Trac features some tools for project management. For instance, it is possible
to define milestones. For Trac, a milestone is a collection of issues to solve before a date.

• Timeline: Trac stores a complete record of the actions, so it is possible to see the progression of the
project

• Integration: Trac is an integrated system, it is possible to include references to the code in a ticket, or
to a ticket in the wiki, or include a reference to a ticket in the comment of the commit using Git.

Trac is not perfect, in any case. The current version of Trac (0.12) has some issues that the Trac team
is trying to resolve.

• The Git support in Trac is not as good as SVN support. In the current version (0.12), Git is available
using an external plug-in. The future 1.0 version will feature native Git support.

• Not all the functionality of Trac is available using the graphical interface. Some task must be carried
out using text commands.

3.4.3 Technical implementation

In technical terms, the repository is an Ubuntu 12.4 LTS Server machine running in a professional hosting
service. We choose Ubuntu because it is likely the most popular version of Linux that offers patches and se-
curity updates for free. Using a LTS (Long term support) version, Ubuntu creates security patches for 5
years, so we will have security support guarantied for the life of the current phase of the project.

We use the Ubuntu version of the applications (Git, Trac, Apache…), we installed it from Ubuntu repository,
not directly from each creator webpage. This way, we assure the installation of the security patches for all
the elements in the server. That is very important, because we have deployed a web application available
from the Internet, not an intranet, so the security against intrusion is an important matter.

The unified login system is implemented using Apache. All the user/password information is stored in a file
that it is accessed by Apache. Given the relatively small number of the developers (the consortium in this
first phase), this simple solution is good enough by the moment.

Trac is a web program implemented in Python, and it is server using Apache. The Trac web pages for each
repository are stored in the directory /var/lib/trac of the server.

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 18 / 27

Git can be accessed remotely using several means, like file sharing, ssh servers and daemons. For the
SMART repository, we use WebDAV, what in turn is implemented by Apache. Accessing Git this way, we
can use Apache as the means of access for all the tools.

4 SMART Open Source Governance

4.1 Open Source Governance Methodologies and Collab oration Schemes

In principle, open source development promotes agile software development methodologies. Agile means
that the development is not restricted to a central planning and one process from start to finish. Agile meth-
odologies have an iterative and incremental character and rely on rapid prototyping and evolutionary devel-
opment making them flexible to changes in the requirements that may emerge throughout the project life-
cycle.

Usually open source projects adopt agile methodologies that allow collocated teams and individuals to plan
and deliver incremental and open source software.

We identify two main streams of open source development management that both use agile methodologies
but differ in the degree of centrality and transparency in decision making. We outline the framework of these
management streams.

In practice variations of the described processes apply in real open source projects and some projects may
adopt hybrid approaches.

4.1.1 Collaborative planning

Under these category of management, the individual or the team who wish to make changes or add a feature
submit their plan to the community (usually via an online system such as an issue tracker) and the communi-
ty can then provide feedback and vote to accept the plan.

The developers then write the code and make it available for review and test. The community can then moni-
tor the status of the feature as it is written and provide feedback.

Advantages:

• The entire process is transparent to the entire community.
• Decisions are taken collaboratively.

Disadvantages:

• Speed of development is highly dependent on good communication between the developers.

4.1.2 Master-governed planning

Under this category, more power is given to certain individuals (masters) who are responsible for allowing
code into specific part of the project.

Teams or individuals who wish to add a feature or change an existing feature may discuss the ideas with the
community or just communicate with the masters.

They send their code to the master and he/she can leverage the community to accept it or not. He/she has
the final say with or without discussing the issue with the community.

Advantages:

• Less prone to integration errors.
• Rapid development, as decisions are taken quickly.

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 19 / 27

Disadvantages:

• The master becomes a bottleneck. It requires highly talented and passionate developers who are
willing to lead the project.

4.1.3 Use Cases

In the following table we compare four different open source projects in terms of their management and gov-
ernance methodologies. One of the projects is the Terrier search engine, which is among the background
projects for SMART.

 Ubuntu Linux Hadoop Terrier

Methodology Collaborative
planning

Master-governed Master-governed Hybrid

Process of devel-
oping a new fea-
ture/release

New features are
called Blueprints.
The blueprint
online system al-
lows the commu-
nity to provide
feedback on the
initial plan and
vote on it. Also
they can later
monitor the code
as it is written

Linus Torvalds
(original creator)
makes the releas-
es of new ver-
sions, also called
the "vanilla" or
"mainline" kernels,
meaning that they
contain the main,
generic branch of
development. This
branch is officially
released as a new
version approxi-
mately every three
months, after Tor-
valds does an ini-
tial round of inte-
grating major
changes made by
all other pro-
grammers, and
several rounds of
bug-fix pre-
releases.

Patches should
be attached to an
issue report. A re-
viewer checks the
code and rejects
until they are
happy. Once it is
committed the is-
sue is closed.

A ‘king’ then
manages what is
committed to the
branch for release

Within the Terrier
team committing
new code is done
by agreement.

If patches are
contributed from
the entire com-
munity the team
leader examines
the code and
commits

Governance Ubuntu Communi-
ty Council and
Ubuntu Technical
Board.

Members of both
boards are nomi-
nated by the pro-
ject sponsors and
then voted by the
community.

Linux Kernel or-
ganisation sup-
ported by a num-
ber of sponsors.

Apache Software
Foundation (Also
sponsored by
Web companies
like Google, Ya-
hoo, etc.)

Governed by the
Terrier team in the
University of
Glasgow

Table 1: Open Source Management and Governance Exam ples

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 20 / 27

4.2 SMART Project Constraints, Recommendations and Selection

4.2.1 Constraints Associated with the Governance of the SMART Open Source

In this paragraph we identify some constraints on the SMART project with regards to the planning and gov-
ernance of the open source development of the SMART framework. These constraints will help us to identify
the right the development methodology and the governance process.

The following constraints are identified:

• Strict deadlines, deliverables have fixed dates that are not possible to change if needed. Conversely
open source releases may be more flexible to changes and delays.

• Initial originators (the consortium teams) are located in distant locations and physical meetings are
expensive.

• The development strategy is semi-public (See the Open Source Development document). The re-
leases are available to the public but the planning of the future releases and the code repository is
private.

4.2.2 Recommendation and Selection

In the light of the previous discussion, the consortium decided to adopt a management style where corre-
sponding master of certain parts of the project are appointed (edge node, search engine, user interface,
etc.). Based on the selected management style new features (patches) suggested by the consortium will be
reviewed by corresponding master. They will then make decisions on the design and whether to accept or
reject the patches. New releases are planned by the consortium where masters of each section can then de-
cide on consensus which patches go to the new release.

The figure below shows different scenarios of interactions between the developers and the masters across
different teams.

Figure 6: Interactions between Masters and Develope rs in the scope of the SMART Governance
Model

As part of the selected governance scheme the consortium has assigned the master roles for two main sub-

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 21 / 27

projects (i.e. edge node and search engine) as follows:

• AIT will act as a master for the edge node subproject of the SMART open source.

• GLA will act as a master for the search engine subproject of the SMART open source.

In any case where new subprojects will be identified/produced, the consortium will assign a master for them
as well.

Note however that the selected management style may be revised (on a merit and need basis) during later
stages of the project. Decisions for changing/revising the governance scheme of the project will be based on
the feedback from evaluating the experience and the practical aspects of the actual execution of the selected
governance process. Hence, the consortium might opt for a more collaborative governance schemes during
later stages as more developers gain experience with the SMART technologies.

After the official end date of the project, SMART would have built an open source community. It is envisaged
that the industrial and the academic partners will allocate resources to support the project in line with their
objectives.

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 22 / 27

5 SMART Open Source Licensing

5.1 Open Source Philosophies

There are many definitions about what is exactly an open source licence.

The first point of discussion is the name itself. Some people call it “free software”, as Richard Stallman and
the Free Software Foundation (FSF)9, the creators of GNU software. They talk about 4 freedoms in the GNU
philosophy10:

• Freedom 0: The freedom to run the program for any purpose.
• Freedom 1: The freedom to study how the program works, and change it to make it do what you wish.
• Freedom 2: The freedom to redistribute copies so you can help your neighbour.
• Freedom 3: The freedom to improve the program, and release your improvements (and modified ver-

sions in general) to the public, so that the whole community benefits.

The first freedom only requires that the program is “freeware” – i.e. it can be received at no cost or for an op-
tional fee, yet with certain restrictions in terms of its use. The next 3 freedoms are characteristics of the real
free software according to the FSF. In particular, these stipulate that the source code must be freely availa-
ble, while also regulating the conditions under which improvement and enhancements could be released
(e.g., whether they have also to be freely available).

Other people in the community call it “open source software”, such as Bruce Perens and the Open Software
Initiative11 (OSI). The definition according to OSI is more specific, comprised by 10 characteristics. Very
briefly the important characteristics for SMART are (from the OSI webpage12):

1. Free Redistribution: The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several different sources. The li-
cense shall not require a royalty or other fee for such sale.

2. Source Code: The program must include source code, and must allow distribution in source code as well
as compiled form.

3. Derived Works: The license must allow modifications and derived works, and must allow them to be dis-
tributed under the same terms as the license of the original software.

4. License Must Not Restrict Other Software: The license must not place restrictions on other software that is
distributed along with the licensed software. For example, the license must not insist that all other programs
distributed on the same medium must be open-source software.

In practice, the OSI recognises that open source software may be commercialised, extended, or deployed,
as long as the open source part is available. We use the OSI definition and the OSI terminology because it is
considered less restrictive and friendlier for commercial companies.

There are many open software licenses. Usually, we can classify them into restrictive or permissive:

• Restrictive licenses

o Strong copyleft (GPL): Redistribution of modifications or derivate works must be made under
the same license

9 http://www.fsf.org/
10 http://www.gnu.org/philosophy/free-sw.html
11 http://www.opensource.org/
12 http://opensource.org/docs/osd

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 23 / 27

o Weak copyleft (LGPL, MPL, EPL): The redistribution must remain with the original license,
but they can be combined with other licenses

• Permissive licenses (BSD, MIT, Apache)

o Redistribution of any modified code from the original licensed can be delivered under any
type of license (even proprietary)

The main danger of permissive licenses is that the code can be “stolen” and included in proprietary applica-
tions by a third party. In the other end, restrictive licensed as GPL are accused of being “viral”, as any (for in-
stance) GPL components or work derived from a GPL work must remain as GPL (and have the source code
available).

5.2 Main Open Source Licensing Requirements of the SMART Consortium

For the purposes of the SMART consortium, the choice of open source license should be made while con-
sidering several requirements. These requirements are based on the intended stakeholder and 3rd party
commercialisation routes. In particular, the DoW (B2.1) identifies key actions for assuring impact that are rel-
evant:

A. Supporting and building an open source community around the project
B. Executing the partner’s exploitation plans, namely:

i. Product support services, value-added consultancy
ii. Service provision, Smart city deployment
iii. Research dissemination from the framework

From these actions, we identify the following desirable requirements for the open source license. It is im-
portant to mention here that these requirements are fixed and the consortium needs to prioritise these re-
quirements if they cannot be all met at once.

1. OSI-approved open source license

The open source SMART framework should adopt a reputable open source license, such as one accept-
ed by the OSI, such that an open source community can be formed (A), and that product support services
and consultancy services can be made (B(i)).

2. Redistributable in unmodified form on a commerci al basis

Partners and other 3rd parties should be able to commercialise products based on the SMART (B(ii)).

3. Redistributable in modified form on a commercial basis:

a. Without (changed) source code

b. With (changed) source code

Partners and other 3rd parties should be able to commercialise products based on the SMART (B(ii))
should experience no risk to their commercial derivative works from viral licenses.

4. Compatible with current Terrier license (MPL v1. 1)

As the Terrier search engine platform is a key component of the SMART solution, the chosen license
should be compatible with the license used by Terrier. This also supports GLA’s current dissemination
plans from the framework (B(iii)).

5. Can use libraries without license contamination

Various open/free source libraries exist that may be beneficial to the SMART project which may be li-
censed under different open source licenses. Any chosen license should consider if such libraries cause
the source code of the main product to be contaminated.

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 24 / 27

6. Maximise the chances of acquiring improvements f rom 3rd parties who redistribute the code
commercially.

Although the license should be commercial friendly (requirement 3) as this is strategic to the consortium,
it should maximise the chances of obtaining improvements from 3rd parties who redistribute the framework
in commercial applications.

In the following section, we discuss some common open source licenses, their pro/cons, and how they are
compatible with the requirements identified here.

5.3 Open Source Licenses Considered by the SMART Co nsortium

The consortium considered the following representative sample of popular open source licenses:

• GPL: Gnu Publish License (http://www.gnu.org/copyleft/gpl.html)

• LGPL: GNU Lesser General Public License (http://www.gnu.org/licenses/lgpl.html)

• MPL: Mozilla Public License (http://www.mozilla.org/MPL/)

• BSD: Berkeley Software Distribution (http://en.wikipedia.org/wiki/BSD_licenses)

• Apache license (http://www.apache.org/licenses/)

The table below lists those licenses and how they meet the requirements of the SMART framework.

Requirement

GPL LGPL MPL BSD family
(e.g. Apache)

1. OSI-approved Yes Yes Yes Yes

2. Redistributable in unmodi-
fied form on a commercial ba-
sis

Only if the
source code is
available and
all referenced
libraries are
GPLed.

Yes, even if the
referenced li-
braries are pro-
prietary.

Yes, even if the
referenced li-
braries are pro-
prietary.

Yes, even if the
referenced li-
braries are pro-
prietary.

3. Redistributable in modified
form on a commercial basis

Redistributable
only if the de-
rived software
is GPL and the
source code of
changes is
available

Redistributable
only if the de-
rived software
is GPL or LGPL
and the source
code of the
changes is
available

Redistributable
but the chang-
es should be
available under
the MPL li-
cense.

Yes (Redistrib-
utable with or
without releas-
ing the source
code of chang-
es)

4. Compatible with Current
Terrier License

No Yes Yes Yes

5. Can use libraries without li-
cense contamination

No, can only
use GPLed li-
braries except
for system li-
braries.

Less viral than
GPL

Yes, new files
containing no
MPL-licensed
code are not
Modifications,
and therefore
do not need to
be distributed

Yes

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 25 / 27

under the terms
of the MPL.

6. Chances of acquiring im-
provements from 3rd parties
who redistribute the code
commercially

Very high High (LGPL
ensures that
any changes on
the library level
should be
committed).

High (MPL en-
sures that any
changes on the
file level should
be committed).

Low (No en-
forcement for
committing
changes)

Table 2: Comparative Overview of the main licenses considered by the SMART Consortium

5.3.1 GPL

GPL is a restrictive license as it enforces the distribution of any derivatives under the GPL license and
therefore considered “viral”. Derivative works include those using a GPLd library (although a few librar-
ies using GPL with an exception, such as the GPL classpath exception). For this reason, the GPL does
not meet most of the requirements we identified above and therefore it is not recommended for the
SMART framework.

5.3.2 LGPL

The LGPL is quite similar to the GPL (“viral”) for the internal code of the library, but explicitly allows the
linking with external modules not GPLed. Some of the most famous libraries in the open source com-
munity are LGPL, like the C standard library for GNU C itself.

However the use of LGPL is now discouraged, even by GNU (mainly in preference of GPL and its in-
herent stronger support for free derivatives13). In our case, the LGPL can be too restrictive for enter-
prise use. We can mix the library with the proprietary modules of SMART, but it enforces the use of
LGPL for all the future derivate works modifying the library itself.

5.3.3 MPL

The Mozilla Public License is a “copyleft” license quite similar to LGPL, but the file is the limit, not the
whole library. So it is possible to combine MPL code with proprietary code with fewer restrictions, so it
is more “company friendly”.

The main disadvantage of MPL used to be that it was impossible to combine it with GPL code. Fortu-
nately, the MPL 2.0 (published last January) has addressed this disadvantage1415.

The main advantage for the SMART project is that Terrier uses MPL (1.1). If we choose MPL, we have
to decide between the 1.1 and 2.0. It makes sense to choose 2.0 for any new software, as there is no
incompatibility between MPL 1.1 and 2.0.

It should be noted that MPL can have some minor implications on the commercial use. For example,
one of the use cases suggested by S3Log is security. Implementing such a system for security purpos-
es may require additional protection measures such as encryption of data and communication between
different parts of the system. This may require integration of encryption code directly into the files at dif-
ferent levels. However, the encryption code might be classified, proprietary or controlled by different
regulation and therefore it can't be published. In some cases, the encryption itself can be taken out from
the OS files and only the function calls are kept in those files but this also might not be always possible
as sometimes it would be impossible even to publish that a specific feature is implemented (e.g. for le-
gal requirements). Nevertheless, it is still possible implement the encryption in separate proprietary
code, e.g. by implementing a high level interface that the framework provides.

13 http://www.gnu.org/philosophy/why-not-lgpl.html
14 http://www.mozilla.org/MPL/2.0/
15 http://www.mozilla.org/MPL/2.0/FAQ.html

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 26 / 27

5.3.4 BSD & Apache

Another family of licences is the BSD license and derivatives, such as the MIT license or the now popu-
lar Apache licence. The main difference is that using the BSD license, the free code can be mixed with
proprietary code and included in commercial products without restrictions, even in products from third
parties, and without returning the improvements to the community.

For some open source advocates, this is the equivalent of stealing and they discourage the use of BSD,
because the free code can be “stolen” from the community. There are many examples of this behav-
iour. For instance, many years ago Microsoft took the BSD-licensed code from the BSD Unix and in-
cluded it as the TCP stack of Microsoft Windows. Apple took the code of the kernel of BSD Unix as the
core of the kernel of his own Mac OS X. (Apple created the open Darwin project, but by public relation-
ship considerations). More recently, Apple took the Apache licensed code of Readability and included it
in their proprietary Safari browser and iPad.

The Apache license “is permissive like BSD, but (unlike BSD) actually happens to mention the rights
under copyright law and gives you a license under those rights. In other words, it actually knows what it
is doing unlike some of the other permissive licenses”16. Moreover, “the Apache 2.0 licenses contain a
patent grant, which means that the authors of the code are giving the receiver any rights that you need
for the authors' patents that happen to be in the code that you are using”17.

In our case, the major disadvantage of the BSD/Apache licenses is that they can make it easy for any third
party to make money from research funded by the tax payer without contributing to the open source commu-
nity.

5.4 Recommendations and Selection

As a summary the MPL and BSD licenses are the most suitable ones for our requirements. However the re-
quirements should be prioritised by the consortium to be able to make a decision on which license to choose.
In particular, requirement 3(a) can be met by BSD licenses and partially by MPL, however MPL meets re-
quirement 6 better than BSD licenses.

In light of how each license addresses the requirem ents listed in Section 3, we recommend the
MPL2.0 license for the SMART open source framework.

Based on the requirements above, the participants in the SMART project will have almost no restrictions on
any third-party software library. However for some licenses there might be limitations/constraints on using
the 3rd libraries within the SMART framework. The table below lists some OSI approved licenses and any
limitations that consortium members should be aware of. In particular, for each license, we consider three
different checks that need to be considered before using a 3rd party library with that license.

3rd party Library
License

Use in SMART
MPLed code

Use in SMART
proprietary code

Release changes
to library

GPL Yes No Yes

LGPL Yes Yes Yes

MPL Yes Yes Yes

BSD Yes Yes No

Apache Yes Yes No

Table 3: Checks associated with the use of 3rd part y libraries in SMART

16 http://blogs.zdnet.com/Burnette/?p=192
17 http://stackoverflow.com/questions/40100/apache-licence-vs-bsd-vs-mit

FP7-287583

SMART

Document Code: D7.4-v1.0

Open Source Software Portal

SMART © Consortium 2012 Page 27 / 27

6 Conclusions

SMART will be releasing its multimedia search engine for environment generated content as open source
software. Therefore, the setup of the project’s open source portal is an important deliverable and milestone
of the project, given that it is a prerequisite for releasing the SMART software as open sources. Note howev-
er that the setup of the project’s open source portal is associated with some key decisions driving the open
source development processes, as well as evolution and exploitation of the open source components of the
project. As part of this deliverable the SMART consortium has dealt with all these issues, with a view to set-
ting up the open source properly, while at the same time commencing the open source development.

The open source portal of the project has been made available at: opensoftware.smartfp7.eu. It is primarily
based on two open source tools, Trac (for bug tracking) and Git (for versioning). A hosted solution (web-
based) has been implemented. Following the establishment of this portal, all developers within the project
have been creating accounts and acquainting themselves with the development environment and tools. The
portal will host several of the coming deliverables of the SMART project (notably the open source proto-
types).

Along with the establishment of the open source portal, the consortium has also selected the license of the
open source software. Following an analysis of popular licensing schemes in terms of their pros/cons and
their alignment to the SMART targets/goals, MPL2.0 has been selected. This licensing scheme provides a
good balance between openness and opportunities for commercial exploitation, given that it is a business
friendly license. Hence, it satisfies requirements for compliance with background projects, while at the same
time ensuring that the companies of the consortium (notably the solution providers/integrators ATOS,
S3LOG, IBM, TELESTO) will be able to build exploitable solutions on top of the SMART platform (without
having to release their own/proprietary add-ons as open source).

SMART has also investigated the open source development processes, as part of wider governance
schemes associated with the project development. The aim of the investigation was to balance between
ease of integration, robustness and the participatory nature of the various processes. Instead of a collabora-
tive planning approach (based on the equal participation/collaboration of all contributors), the consortium has
opted for a master-governed planning approach. The later emphasizes the leading role of a master in the in-
tegration process. In this way, complex integration tasks are facilitated and the code is likely to be more ro-
bust, especially if the master is a highly skilled and dedicated individual. The selected master-governed ap-
proach is expected to boost the quality and rapid evolution of the project during early stages. SMART may
consider a shift to the collaborative-planning approach (or even a hybrid approach) in later stages of the pro-
ject.

The present deliverable is expected to be valuable to SMART consortium members and third-parties (e.g.,
community members) engaging with the SMART open source development endeavor.

